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Outline 

• Electrical conduction: DC and RF 

• Superconductivity 

– Type-I and type-II superconductors 

– Intro to BCS and GL theories 

• Surface impedance of superconductors 

• DC and RF critical fields 

• Field dependence of surface resistance 

• Intro to performance limitations 
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DC electrical conduction: resistance 

𝑝 = 𝑒𝐸𝜏 

Average momentum of an electron in 

an electric field within the time 

between collision, t 

t = l/vF  10-14 s is the electrons’ scattering time 

EE
m

en
J 

t


2

Ohm’s law, local relation between J and E 
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Electrodynamics of normal conductors 

• From Drude’s model: 

Maxwell’s equations 
(linear and isotropic) material’s 

equations 

E
m

enJ

t

J 2






t  
EE

i
J 

t







1

tieEE 

0

t << 1 at RF frequencies 

For accelerator applications, the rate of oscillation of the e.m. field is in the 

radio-frequency (RF) range (3 kHz – 300 GHz) 
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Skin depth 

• For a good conductor at RF frequencies, e<< → 𝜕𝐷 𝜕𝑡~0  

𝛻 × 𝛻 × 𝐻 = 𝛻 𝛻 ∙ 𝐻 − 𝛻2𝐻 = 𝜎𝛻 × 𝐸 = −𝑖𝜇0𝜇𝜎𝜔𝐻 

HiH  0

2  similar equations for E and J 

Hy(x,t) 

Ez(x,t) 

x 

z 

y 

• Solution (semi-infinite slab): 
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Surface Impedance 

• The surface impedance is defined as: 

surface resistance 

surface reactance 

ss XiR
H

E

dxxJ
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• The impedance of vacuum is: 



i
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)0(

)0(


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1 0 ss XR

• For the semi-infinite plane conductor: 
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Example 

Surface resistance of Cu at 300 K, 1.5 GHz: 

(300 K) = 5.8107 1/Wm 

0 = 1.2610-6 Vs/Am 

 = 1 

 = 1.7 m, Rs = 10 mW 
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What happens at low temperature? 

•  (T) increases,  decreases The skin depth (the 

distance over which fields vary) can become less than the mean 

free path of the electrons (the distance they travel before being 

scattered) )()( xExJ 

• Introduce a new relationship where J is related to E over a 

volume of the size of the mean free path (l) 

F

eff
vm

len

ll

2



 

Effective 

conductivity 
= t 

Contrary to the DC case higher purity (longer l) does not increase 

the conductivity  anomalous skin effect 
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Anomalous skin effect 

𝑍𝑛 =
4

9

𝜇0
2

2𝜋
3

1 3 
𝑙

𝜎

1 3 

𝜔2 3 1 + 3𝑖  l >>  

• l/ = mvF/e2n is a constant for each material ~ 7×10-16 Wm2 

• Independent of temperature 
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Example 

Surface resistance of Cu at 1.5 GHz as a function of temperature 

rl = 6.6×10-16 Wm2 

r(273 K) = 1.55×10-8 Wm 

RRR = r(300K)/r(4 K) = 300 

Rs=1/ 

Rs(4 K)  1.3 mW 

…in spite of the resistivity 

decreasing by a factor 300 

from 300 K to 4 K, Rs only 

decreases by a factor of ~8!  
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Superconductivity 

The 3 Hallmarks of Superconductivity 

• Zero resistance 

 

• Complete diamagnetism 

 

• Flux quantization 
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Zero Resistance 

Kammerlingh-Onnes, 1911 
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Complete Diamagnetism 

Meissner 

 

 
and 

 

 

Ochsenfeld, 

 

1933 

“Meissner effect” 
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Flux Quantization 

Deaver 

 

 
and 

 

 

Fairbank, 

 

 

1961 
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Critical Temperature 

• “Isotope effect” (1950): 𝑇𝑐 ∝ 1 𝑀 , M=isotope mass 
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Two-fluid model 

• Gorter and Casimir (1934) two-fluid model: charge carriers 

are divided in two subsystems, superconducting carriers of 

density ns and normal electrons of density nn. 

• The normal current Jn and the supercurrent Js are assumed to 

flow in parallel. Js flows with no resistance. 

H0 

Vacuum SC 

J = Jn + Js 
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London equations (I) 

• Superelectrons accelerate steadily in the 

presence of a constant electric field 

𝑚
𝑑𝑣𝑠
𝑑𝑡

= 𝑒𝐸 

𝐽𝑠 = 𝑛𝑠𝑒𝑣𝑠 

𝑑𝐽𝑠
𝑑𝑡

=
𝑛𝑠𝑒

2

𝑚
𝐸 

2

0 en

m

s

L


  London penetration depth 

E
dt

Jd

L

s




2
0

1


   E=0: Js goes on forever 

  E is required to maintain an AC current 

F. and H. London, 1935 
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London equations (II) 

BJ
L

s



2
0

1


   B  is the source of Js 

  Spontaneus flux exclusion 

𝛻 × 𝐽𝑠
 =

1

𝜇0𝜆𝐿
2 𝛻 × 𝐸 

𝛻 × 𝐸 = −𝐵  

𝛻 × 𝐽𝑠
 = −

1

𝜇0𝜆𝐿
2 𝐵

 
 

2

2

L

B
B




𝛻 × 𝐵 = 𝜇0𝐽𝑠 
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Coherence length 

Local condition between current and field. Valid if x0 << L 

or l << L 

Nonlocal generalization proposed by Pippard in 1953: 

𝑅 = 𝑟 − 𝑟′ 

x: “coherence length”, characteristic dimension of the 

superelectrons wave-function 

l

111

0


xx

𝜉0 ∝
ℏ𝑣𝐹
𝑘𝑇𝑐

 for a pure material 
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The energy gap 

Measurements of the electronic specific heat 

(1954): 

• Jump at Tc without any latent heat 

• Exponential decrease well below Tc 

𝐶𝑒𝑠 ∝ 𝑒−𝑏𝑇 𝑇𝑐  b~1.5 

Results of measurements of electromagnetic absorption (1956) 

also consistent with the existence of an energy gap D, of order 

kTc, between the ground state and the excited state of a 

superconductor 
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The BCS theory 

• In 1958 Bardeen, Cooper and Schrieffer published a theory 

of superconductivity in which 

– There exists an attractive interaction between electrons, 

forming “Cooper pairs” 

– This interaction occurs through the exchange of a lattice 

phonon 

– As a results of this interaction, there exists a bound 

state with energy lower than 2EF 

Bardeen, Cooper and Schrieffer 
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Cooper pairs 

• Cooper pairs are formed by electrons with 

opposite momentum and spin 

• Cooper pairs belong all to the same quantum state 

and have the same energy 

• When carrying a current, each Cooper pair 

acquires a momentum which is the same for all 

pairs 

• The total momentum of the pair remains constant. 

It can be changed only if the pair is broken, but 

this requires a minimum energy 2D 

• Positively charged wake due to moving 

electron attracting nearby atoms 

• This wake can attract another nearby electron 

a Cooper pair is formed 



Slide 23 of 62 

Quasi-particles excitations 

• The unpaired electrons behave almost like free electrons and 

are called “quasi-particles” 

(E-EF)/D 
0 

1 

E/D 

nc 

sc 

Density of States 
Energy spectrum 
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Energy gap 

 
2

(0) cos
2

t
T

 
D  D  

 

t = T/Tc 

D(0)/kTc = 1.764 

D(0) = 1.55 meV for Nb 

P. Townsend and J. Sutton, Phys. Rev. 128 (1962) 591. 



Slide 25 of 62 

Characteristic Lengths 

• Coherence length       interaction distance between 

electrons forming a Cooper pair  

𝜉0 ≡
ℏ𝑣𝐹

𝜋Δ 0
: 

x0 = 39 nm for Nb 

• Penetration depth, (T): decay length of magnetic field in 

the superconductor (0) = 36 nm for Nb 

𝜆 𝑇 =
𝜆𝐿 0

1 −
𝑇
𝑇𝑐

4
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Effect of impurities on x and  

• Adding impurities to a superconductor reduces the normal 

electrons mean free path, so that the electrodynamic 

response changes from “clean” (l >> x) to the “dirty” limit 

(l << x). 

• Changes in the characteristic lengths of the SC can be 

approximated as: 

l

111

0


xx

𝜆 𝑙, 𝑇 = 𝜆𝐿 𝑇 1 +
𝜉0
𝑙
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Ginzburg-Landau theory 

• In 1950 Ginzburg and Landau proposed a theory 

of SC alternative to the London theory: 

– Near Tc, the difference in the Helmholtz free 

energy density between SC and NC state can 

be written as a power series of a complex order 

parameter, 𝜓 𝑟 = 𝜓 𝑟 𝑒𝑖𝜙 𝑟  

np = |y|2 = ns/2  

V. Ginzburg 

L. Landau 
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Ginzburg-Landau equations 

 
2

22 4 01

2 2 2
s n

H
f f i e

m


 y y y


       A

m*=2me 

e*=2e 

Minimization of fs with respect to changes in order parameter 

and magnetic fields results in two equations: 

 
22 1

0
2

i e
m

y  y y y


     A

 
e

i e
m

y y


 


   J A

with proper boundary conditions. For example −𝑖ℏ𝛻 − 𝑒∗𝐀 𝜓|𝑛 = 0 
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Characteristic lengths in GL theory 

• GL penetration depth: characteristic length for variation of 

the magnetic field  

2 2

0

GL

m

e


 y






• GL coherence length: characteristic length for variation of 

the order parameter 

 
 

1

12
GL T

tm T
x


 



xGL is related to the BCS coherence length (x0): 

𝜉𝐺𝐿 𝑇 ∝
𝜉0

1 − 𝑡
 

 

𝜉𝐺𝐿 𝑇 ∝
𝜉0𝑙

1 − 𝑡
 

Clean limit 

Dirty limit 
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Thermodynamic critical field 

Superconductivity is lost when a magnetic field applied to a SC 

increases above a critical value. 

Gibbs free energy density in a SC 

with applied magnetic field Ha: 

2

0

1
( , ) ( ,0)

2
s s ag T H g T H 

at Ha=Hc, gs=gn 

 
0

2
( ,0) ( ,0)c n sH g T g T


 

   
2

0 1c c

c

T
H T H

T

  
    
   

from BCS 

theory 
𝐻𝑐 0 =

0.472𝛾

𝜇0
𝑇𝑐 

g is the Sommerfeld constant 
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Critical current 

Superconductivity is lost when a current flowing in a SC 

increases above a critical value. 

I 

a 

HI 
𝐼𝑐 = 2𝜋𝑎𝐻𝑐 

𝐽𝑐 =
𝐻𝑐

𝜆
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Phase diagram of SC 
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The NS boundary energy 

The change in free energy density f 

due to the presence of a NS boundary 

was calculated using GL theory. 

Qualitatively: 

Ginzburg-Landau parameter: kGL = /xGL 

𝛿𝑓 =
𝜇0
2

𝐻0
2𝜆 − 𝐻𝑐

2𝜉  

If 𝜅𝐺𝐿 >
1

2
, 𝛿𝑓 < 0               it is 

energetically favorable to create NS 

boundaries within the SC 
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Type-I and Type-II SC 

Abrikosov found solutions 

y(x, y) with periodic zeros = 

lattice of vortices with 

quantized magnetic flux 
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Flux-line lattice 

Triangular flux-line 

lattice penetrating the 

top surface of a SC 

lead-indium sample 

 
The points of exit of the 

flux lines are decorated by 

small ferromagnetic 

particles 

H. Träuble and U. Essmann, J. Appl. Phys. 39, 4052 (1968); 
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Critical fields 

𝐻𝑐 =
𝜙0

2𝜋 2𝜆𝜉
 

𝐻𝑐2 = 2𝜅𝐻𝑐 =
𝜙0

2𝜋𝜉2
 

𝐻𝑐1 ≈
𝜙0

4𝜋𝜆2
ln 𝜅 + 𝛼  

𝛼 =
1

2
+

1 + 𝑙𝑛2

2𝜅 − 2 + 2
=  

1.35, 𝜅 = 0.71
0.5, 𝜅 ≫ 1

 

Thermodynamic critical field 

Upper critical field 

Lower critical field 

For Nb, k ~ 0.85, Bc1(0) ~ 180 mT, Bc(0)~195 mT, Bc2(0) ~ 400 mT 
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Surface barrier 

• Condition for entry of the first vortex, parallel to a planar 

surface (Bean and Livingston, 1964). 

Penetration occurs at 

 

Bp ~ Bc > Bc1 
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Surface critical field 

• Saint-James and de Gennes obtained, using the GL theory, 

that in a magnetic field parallel to the surface, SC will 

nucleate in a surface layer of thickness ~ x at a field Hc3 = 

1.695Hc2, higher than that at which nucleation occurs in 

the volume of the material 

Hc3 

x 



Slide 39 of 62 

Type 1.5 Superconductors 

“clusters” of vortices 
– vortex attraction 

vortex lattice – 
vortex repulsion 

• Multi-component SC with 

x1 <  < x2 

Similar phenomenon was observed in low-k SC (Nb, TaN, PbIn) with the origin of 

vortex attraction being related to non-local effects (Type-IIa or Type-II/1) 

• Theoretically, vortices can 

have long-range attractive, 

short-range repulsive 

interaction in such material 

• "Semi-Meissner state": 

vortex clusters coexisting 

with Meissner domains at 

intermediate fields 
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Surface resistance of SC 

• In RF fields, the time-dependent magnetic field in the 

penetration depth will generate an electric field: 

 

 

• At T > 0 K, there is small fraction of unpaired electrons 

 

• Because Cooper pairs have inertia (mass=2me) they cannot 

completely shield nc electrons from this E-field 

nn(T)  e-D/kBT 

Rs > 0 
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Surface impedance of superconductors 

• Electrodynamics of sc is the same as nc, only that we have to 

change   1 – i 2 

EiJ
L

s 2

0

1


  EiJJJ sn 21  

 




t


m

en

m

en sn
2

2

2

1 , 

• Penetration depth:   












2

1

21200 2
11

1

212







 ii

i

i
L

1 << 2 for sc at T<<Tc  

2

1
2

0





 LL

x
i

x

y eeHH




For Nb, L = 36 nm, compared to  = 1.7 m for Cu at 1.5 GHz 
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Surface impedance of superconductors 

   







i

i
Zs

1

00

2

sss XiRZ 
Ls: kinetic inductance 

3

1

22

0
2

1
LsR 

LsX  0

For a sc 1 << 2  y <<1  y
y

2,
2

3

  
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Surface resistance of superconductor 

3

1

22

0
2

1
LsR 

• Rs  2  use low-frequency cavities to reduce power dissipation 

• Temperature dependence: 

ns(T)  1-(T/Tc)
4 

1(T)  nn(T)  e-D/kBT 

 TklR BLs D exp32 T < Tc/2 
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Material purity dependence of Rs 

l
l

Rs

23

01 









x

 
l

l L
01

x
 

• The dependence of the penetration depth on l is approximated as 

 

•  1  l 

21



lR

lR

s

s if l >> x0 (“clean” limit) 

if l << x0 (“dirty” limit) 

Rs has a minimum for l = x0/2 
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BCS surface resistance (1) 

• Mattis and Bardeen (1958) calculated the perturbed state 

function using time-dependent perturbation theory. 

 

• Considered only the linear response to weak fields (only 

terms linear in A) so that the perturbation term is: 

𝐻1 =
𝑒

2𝑚
 𝐴 ∙ 𝑝 𝑖 + 𝑝 𝑖 ∙ 𝐴 

𝑖
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BCS surface resistance (2) 

• The following non-local equation between the total current 

density J and the vector potential A  produced by the 

perturbation H1 was derived 

can be converted in a product in Fourier domain: J(q) = -K(q)A(q) 

• The surface impedance can be derived in term of the 

Kernel K(q): 

for diffuse scattering of electrons at the metal 

surface 
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BCS surface resistance (2) 

• There are numerical codes (Halbritter (1970)) to calculate RBCS as 

a function of , T and material parameters (x0, L, Tc, D, l) 

• For example, check http://www.lepp.cornell.edu/~liepe/webpage/researchsrimp.html 

Let’s run some numbers: Nb at 2.0 K, 1.5 GHz   = 36 nm, n = 3.3108 1/Wm, 

D/kBTc = 1.85, Tc = 9.25 K 

  RBCS  20 nW  Xs  0.47 mW   

 
 

6102
GHz 1.5 K, 300

GHz 1.5 K, 2 
s

BCS

R

RNb 

Cu 

• A good approximation of RBCS for T < Tc/2 and  < D/ħ is: 

RBCS  C1 = 2.246 

http://www.lepp.cornell.edu/~liepe/webpage/researchsrimp.html
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Experimental results 

• Small deviations from BCS theory can be 

explained by strong coupling effects, 

anisotropic energy gap in the presence of 

impurity scattering or by inhomogeneities  

Frequency dependence 

A. Phillip and J. Halbritter, 

IEEE Trans. Magn. 19(3) 

(1983) 999. 

RBCS can be optimized by tuning the 

density of impurities at the cavity surface. 

Nb, 4.2 K 

Dependence on material purity 

C. Benvenuti et 

al., Physica C 

316 (1999) 153. 

• Nb films sputtered on Cu 

• By changing the sputtering species, the mean free path 

was varied 

Nb,1.5 GHz, 4.2 K 

“clean” 

“dirty” 
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Residual resistance 

Possible contributions to Rres: 

• Trapped magnetic field 

• Normal conducting precipitates 

• Grain boundaries 

• Interface losses 

• Subgap states 

B. Aune et al., Phys. Rev. 

STAB 3 (2000) 092001. 

Nb, 1.3 GHz 

Rs = RBCS(, T, D, Tc, L, x0, l) + Rres(?) 

2 K 

For Nb, Rres (~1-10 nW) dominates Rs at low frequency (f < ~750 MHz) 

and low temperature (T < ~2.1 K) 
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BCS surface reactance 

• A good approximation of 2 for T < Tc/2 and  < D/ħ is: 

 0sX
𝜎2
𝜎𝑛

=
1

𝜔𝜇0𝜎𝑛𝜆
2
=

𝛿2

2𝜆2
 

𝜎2
𝜎𝑛

=
𝜋Δ

ℏ𝜔
tanh

Δ

2𝑘𝑇
 

𝜆2 =
ℏ

𝜇0𝜎𝑛𝜋 Δ tanh
Δ
2𝑘𝑇
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RF critical field: superheating field 

• Penetration and oscillation of vortices 

under the RF field gives rise to strong 

dissipation and the surface resistance of 

the order of Rs in the normal state 

• the Meissner state can remain metastable 

at higher fields, H > Hc1 up to the 

superheating field Hsh at which the Bean-

Livingston surface barrier for penetration 

of vortices disappears and the Meissner 

state becomes unstable 

Meissner State 

Abrikosov 

Vortex Lattice 

T 

H 

Tc 

Hc2(0) 

Hc1(0) 

Normal State 

Type-II SC 

Hsh(0) 

Hsh is the maximum magnetic field at which a type-II superconductor 

can remain in a true non-dissipative state not altered by dissipative 

motion of vortices. 

At H = Hsh the screening surface current reaches the depairing value 

Jd = nseD/pF 
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Superheating field: theory 

• Calculation of Hsh(k) from Ginzburg-Landau theory (TTc) 

[Matricon and Saint-James (1967) ]: 

H. Padamsee et al., RF Superconductivity for Accelerators 

(Wiley&Sons, 1998) 

1,745.0

1,2.1





k

k

csh

csh

HH

HH

t 

Time evolution of the spatial 

pattern of the order parameter 

in a small region around the 

boundary where a vortex entrance 

is taking place, calculated from 

time-dependent GL-equations. 

A. D. Hernandez and D. Dominguez, 

Phys. Rev. B 65, 144529 (2002)  
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Superheating field: theory 

• Weak dependence of Hsh on non-magnetic impurities 

• Calculation of Hsh(T, l) for k >> 1 from Eilenberger equations 

(0<T<Tc) [Pei-Jen Lin and Gurevich (2012)]: 

 = x0/l 

csh HH 845.0

   
























2

10
c

shsh
T

T
HTH

F. Pei-Jen Lin and A. Gurevich, Phys. Rev. B 85, 054513 (2012)  

Impurity scattering parameter 
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Superheating field: experimental results 

• Use high-power (~1 MW) and short (~100 s) RF pulses to achieve 

the metastable state before other loss mechanisms kick-in 

Highest Hp ever 

measured in CW!!! 

T. Hays and H. Padamsee, Proc. 1997 

SRF Workshop, Abano Terme, Italy, p. 

789 (1997) . 

• RF magnetic fields higher than Hc1 have been measured in both Nb and 

Nb3Sn cavities. However max HRF in Nb3Sn is << predicted Hsh… 
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Field dependence of Rs: Experimental results 
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T = 2.0 K, f = 1.3 GHz 

B. Aune et al., Phys. Rev. STAB 3 
(2000) 092001. 
R. Geng, SRF’11, p. 74 
G. Ciovati, P. Kneisel and G. Myneni, 
SSTIN10, p. 25. 
W. Singer et al., Phys. Rev. ST. Accel. 
Beams 16 (2013) 012003 
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Q-slopes 
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DRs ~ R1H + gH2 
High-field Q-slope 

DRs ~ exp(H) 

Q01/Rs 

: BCS theory 
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Rs at High Field 

Clean limit Moderately Dirty limit 

• Unlike in the moderately dirty limit, in a clean SC the 

quasiparticle density of states become that of a normal-conductor 

(gapless) at H< Hsh 

F. Pei-Jen Lin and A. Gurevich, Phys. Rev. B 85, 054513 (2012)  
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Effect of Impurities on Rs at High Field 

Impurities in the top ~40nm layer of Nb can decrease the non-linearity 

of Rs at high fields 

𝛼 =
𝜋𝜉0
ℓ

 

eg() at H=Hsh 

Rs(H)  exp(-eg(H)/kT) 
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Recent breakthroughs… 

Decreasing Rs(H) 

up to ~90 mT 
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Accel. Beams 16 (2013) 042001 
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Sci. Tech. 26 (2013) 102001 



Slide 60 of 62 

Nonlinear Rs at high-field 

• A. Gurevich published last year a theory of non-linear Rs 

at high field [A. Gurevich, Phys. Rev. Lett. 113, 087001 (2014)] 

 

• Rs(H) was re-derived from first principles (BCS) taking 

into account oscillations of N(e, t) due to RF current 

pairbreaking and non-equilibrium distribution function of 

quasiparticles in the dirty limit 

See talk by A. Gurevich on Wednesday, 8:00 am 
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Performance limitations 
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Thank you for your attention! 


