

Recent Results on Direct Reactions with Stored Radioactive Beams and with Active Targets

Peter Egelhof GSI Darmstadt, Germany for the EXL Collaboration

9th Int. Conference on Direct Reactions with Exotic Beams DREB 2016

> Halifax, Canada July 11 – 15, 2016

Recent Results on Direct Reactions with Stored Radioactive Beams and with Acitve Targets

Peter Egelhof GSI Darmstadt, Germany for the EXL Collaboration

9th Int. Conference on Direct Reactions with Exotic Beams DREB 2016

> Halifax, Canada July 11 – 15, 2016

Recent Results on Direct Reactions with Stored Radioactive Beams and with Acitve Targets

- I. Introduction
- II. Direct Reactions with RIB's at Storage Rings A new Approach for Low Momentum Transfer Measurements
- III. First Experiments and Feasibility Studies at the ESR Storage Ring
 - a) Elastic Proton Scattering on ${}^{56}Ni \Rightarrow$ Nuclear Matter Distribution
 - b) Inelastic Alpha Scattering on ${\rm ^{58}Ni} \Rightarrow$ Giant Monopole Resonance
- **IV.** Future Perspectives
- V. Conclusions

I. Introduction: Direct Reactions with Radioactive Beams in Inverse Kinematics

classical method of nuclear spectroscopy:

- \Rightarrow light ion induced direct reactions: (p,p), (p,p'), (d,p), ...
- \Rightarrow to investigate exotic nuclei: inverse kinematics
- \Rightarrow important information at low momentum transfer!

of particular interest:

- \Rightarrow radial shape of nuclei: skin, halo structures
- \Rightarrow doubly magic nuclei: ⁵⁶Ni, ¹³²Ni
- \Rightarrow giant resonances: nuclear compressibility

future perspectives at FAIR:

- \Rightarrow profit from intensity upgrade (up to 10⁴ !!)
- \Rightarrow explore new regions of the chart of nuclides and new phenomena
- \Rightarrow use new and powerful methods:
- EXL: direct reactions at internal storage ring target
 - ⇒ high luminosity even for very low momentum transfer measurements

First Experiments at the ESR

Nuclear Physics with Radioactive Beams at FAIR: NUSTAR: NUclear STructure, Astrophysics and Reactions

I High intensity primary beams from SIS 100 (e.g. $10^{12} \, {}^{238}\text{U}$ / sec at 1 GeV/u)

The EXL Project: EXotic Nuclei Studied in Light-Ion Induced Reactions at the NESR Storage Ring

Light-Ion Induced Direct Reactions at Low Momentum Transfer

- elastic scattering (p,p), (α,α), ...
 nuclear matter distribution ρ (r), skins, halo structures
- inelastic scattering (p,p'), (α,α'), ...
 deformation parameters, B(E2) values, transition densities, giant resonances
- transfer reactions (p,d), (p,t), (p, ³He), (d,p), ... single particle structure, spectroscopic factors, spectroscopy beyond the driplines, neutron pair correlations, neutron (proton) capture cross sections
- charge exchange reactions (p,n), (³He,t), (d, ²He), ...
 Gamow-Teller strength
- knock-out reactions (p,2p), (p,pn), (p,p ⁴He)...
 ground state configurations, nucleon momentum distributions

for almost all cases:

region of low momentum transfer contains most important information

Speciality of EXL:

measurements at very low momentum transfer

 \Rightarrow complementary to R³B !!!

Experiments to be Performed at Very Low Momentum Transfer – Some Selected Examples

- Investigation of Nuclear Matter Distributions:
 - \Rightarrow halo, skin structure
 - \Rightarrow probe in-medium interactions at extreme isospin (almost pure neutron matter)
 - \Rightarrow in combination with electron scattering (ELISe project @ FAIR):

separate neutron/proton content of nuclear matter (deduce neutron skins)

method: elastic proton scattering \Rightarrow <u>at low q</u>; high sensitivity to nuclear periphery

Experiments to be Performed at Very Low Momentum Transfer – Some Selected Examples

- Investigation of Nuclear Matter Distributions:
 - \Rightarrow halo, skin structure
 - \Rightarrow probe in-medium interactions at extreme isospin (almost pure neutron matter)
 - \Rightarrow in combination with electron scattering (ELISe project @ FAIR):

separate neutron/proton content of nuclear matter (deduce neutron skins)

method: elastic proton scattering \Rightarrow <u>at low q</u>: high sensitivity to nuclear periphery

- Investigation of the Giant Monopole Resonance:
 - \Rightarrow gives access to nuclear compressibility \Rightarrow key parameters of the EOS
 - \Rightarrow new collective modes (breathing mode of neutron skin)

method: inelastic α scattering at low $q_{\rm c}$

Experiments to be Performed at Very Low Momentum Transfer – Some Selected Examples

- Investigation of Nuclear Matter Distributions:
 - \Rightarrow halo, skin structure
 - \Rightarrow probe in-medium interactions at extreme isospin (almost pure neutron matter)
 - \Rightarrow in combination with electron scattering (ELISe project @ FAIR):

separate neutron/proton content of nuclear matter (deduce neutron skins)

method: elastic proton scattering \Rightarrow <u>at low q</u>: high sensitivity to nuclear periphery

- Investigation of the Giant Monopole Resonance:
 - \Rightarrow gives access to nuclear compressibility \Rightarrow key parameters of the EOS
 - \Rightarrow new collective modes (breathing mode of neutron skin)

method: inelastic α scattering <u>at low q</u>

- Investigation of Gamow-Teller Transitions:
 - \Rightarrow weak interaction rates for N = Z waiting point nuclei in the rp-process

 \Rightarrow electron capture rates in the presupernova evolution (core collaps) method: (³He,t), (d,²He) charge exchange reactions <u>at low q</u>

Kinematical Conditions for Light-Ion Induced Direct Reactions in Inverse Kinematics

- required beam energies: E ≈ 200 ... 740 MeV/u (except for transfer reactions)
- required targets: ^{1,2}H, ^{3,4}He
- most important information in region of low momentum transfer
 - \Rightarrow low recoil energies of recoil particles
 - \Rightarrow need thin targets for sufficient angular and energy resolution

Advantage of Storage Rings for Direct Reactions in Inverse Kinematics

- low threshold and high resolution due to: beam cooling, thin target (10¹⁴-10¹⁵ cm⁻²)
- gain of luminosity due to: continuous beam accumulation and recirculation
- low background due to: pure, windowless ^{1,2}H₂, ^{3,4}He, etc. targets
- experiments with isomeric beams

Experiments at very low momentum transfer can only be performed at EXL (except with active targets, but with substantial lower luminosity)

III. First Experiments with RIB's and Feasibility Studies at the ESR Storage Ring

specially designed scattering chamber for the ESR:

reactions with ⁵⁸Ni:

proof of principles and feasibility studies:

- UHV capability of detector setup
- background conditions in ESR environment at the internal target
- Iow energy threshold
- beam and target performance

reactions with ⁵⁶Ni:

⁵⁶Ni: doubly magic nucleus!!

- (p,p) reactions: nuclear matter distribution
- (α,α`) reactions: giant resonances (GMR) EOS parameters (nucl. compressibility)
- (³He,t) reactions: Gamow-Teller matrix elements, important for astrophys.

Theorectical Predictions

needed: large solid angle detectors with low threshold and large dynamic range

Setup at the ESR Storage Ring

Experimental Concept

Experimental Concept

Experimental Concept

Auxilliary vacuum side

Ultra-high vacuum side

Experimental Setup at the ESR

Scattering Chamber mounted at the Internal Target of the ESR

challenge: UHV capable and bakeable DSSD and Si(Li) detectors

FRS: In-Flight Separator & High-Resolution Spectrometer

Preparation of the Stored Radioactive ⁵⁶Ni Beam

beam after

fragmentation of 600 MeV/u ⁵⁸Ni beam FRS:

injection to ESR: 7 x 10⁴ ⁵⁶ Ni per injection

stochastic cooling, bunching and stacking (60 injections):

4.8 x 10⁶ ⁵⁶Ni in the ring rf deposition injected beam 50 vacuum chamber recorded DC current transformer data linear fit to the data 40 30 [1] electron cooled beam after 20 intense stack stochastic precooling 10 target profile injections not recorded 0 40 35 30 25 20 15 500 1000 1500 2000 2500 t [s] H_2 target: 2 x 10¹³ cm⁻² luminosity: 10 \Rightarrow **L = 2 x 10²⁶ cm⁻² sec**⁻¹ F. Nolden et al., 5 (reduced by aperture) 0 Proc. IPAC2013 -2 -8 -6 0 2 4 Beam position [mm] **MOPEA013** $\sigma = 3.78 \text{ mm}$ $x_0 = 0.58 \text{ mm}$

First Nuclear Reaction Experiment with Stored Radioactive Beam!!!!

M. von Schmid et al., Phys. Scr. T166 (2015) 014005

P. Egelhof et al., JPS Conf. Proc. 6 (2015) 020049

⁵⁶Ni(p,p), E = 390 MeV/u Reconstructed Energy

⁵⁶Ni(p,p), E = 390 MeV/u Benefit of the 1mm Aperture

⁵⁶Ni(p,p`), E = 390 MeV/u Identification of Inelastic Scattering

⁵⁶Ni(p,p), E = 390 MeV/u Angular Distribution

M. v. Schmid, PHD thesis 2015

Concept of the Data Analysis

- Glauber multiple-scattering theory for calculation of cross sections:
 - use measured free pp, pn-cross sections as input (in medium effects negligible)
 - fold with nucleon density distribution
 - take into account multiple scattering (all terms!) (small for nuclear periphery)
- variation of the nuclear matter density distribution:
 - a) phenomenological parametrizations (point matter densities):
 - SF: Symmetrized Fermi
 - b) "model independent" analysis:

SOG: Sum Of Gaussians (standard method for electron scattering data: I. Sick, Nucl. Phys. A 218 (1974) 509) Nuclear Matter Density Distribution of ⁵⁶Ni from Elastic Proton Scattering

⁵⁶Ni(p,p), E = 390 MeV/u Angular Distribution Cross Section fitted using the Glauber Theory

M. v. Schmid, PHD thesis 2015

Nuclear Matter Density Distribution of ⁵⁶Ni from Elastic Proton Scattering

Nuclear Matter Distribution of ⁵⁶Ni Cross Section fitted using the Glauber Theory

Nuclear Matter Density Distribution of ⁵⁶Ni from Elastic Proton Scattering

Nuclear Matter Distribution of ⁵⁶Ni Cross Section fitted using the Glauber Theory

 ${}^{58}Ni(\alpha, \alpha)$, E = 100 MeV/u

challenge: detect and identify very low energy recoils

J. C. Zamora, PHD thesis 2015

IV. Future Perspectives

short term perspectives:

- (α, α) on ⁵⁶Ni \Rightarrow investigate ISGMR, compressibility of nuclear matter
- (³He,t) and (d,²He) on ⁵⁶Ni \Rightarrow investigate Gamow Teller strength
- (p,p) on heavier Ni and Sn isotopes \Rightarrow nuclear matter distributions, skins
- transfer reactions at Cryring (GSI) and TSR@ISOLDE (CERN)

upgrade of detector setup and readout:

Future Perspectives

long term perspectives (EXL @ FAIR):

- for first phase of FAIR:
 - \Rightarrow install EXL at the HESR
 - \Rightarrow and/or install transfer line from SUPER-FRS / CR to the ESR

The E105 Collaboration

S. Bagachi¹, S. Bönig², M. Castlós³, I. Dillmann⁴, C. Dimopoulou⁴, P. Egelhof⁴, V. Eremin⁵, H. Geissel⁴, R. Gernhäuser⁶, M.N. Harakeh¹, A.-L. Hartig², S. Ilieva², N. Kalantar-Nayestanaki¹, O. Kiselev⁴, H. Kollmus⁴, C. Kozhuharov⁴, A. Krasznahorkay³, T. Kröll², M. Kuilman¹, S. Litvinov⁴, Yu.A. Litvinov⁴, M. Mahjour-Shafiei¹, M. Mutterer⁴, D. Nagae⁸, M.A. Najafi¹, C. Nociforo⁴, F. Nolden⁴, U. Popp⁴, C. Rigollet¹, S. Roy¹, C. Scheidenberger⁴, M. von Schmid², M. Steck⁴, B. Streicher^{2,4}, L. Stuhl³, M. Takechi⁴, M. Thürauf², T. Uesaka⁹, H. Weick⁴, J.S. Winfield⁴, D. Winters⁴, P.J. Woods¹⁰, T. Yamaguchi¹¹, K. Yue^{4,7}, J.C. Zamora², J. Zenihiro⁹

¹ KVI, Groningen

- ² Technische Universität Darmstadt
- ³ ATOMKI, Debrecen
- ⁴ GSI, Darmstadt
- ⁵ loffe Physico-Technical Institute, St.Petersburg
- ⁶ Technische Universität München

⁷ Institute of Modern Physics, Lanzhou

- ⁸ University of Tsukuba
- ⁹ RIKEN Nishina Center
- ¹⁰ The University of Edinburgh
- ¹¹ Saitama University

V. Conclusions

- For the First Time (World Wide) a Nuclear Reaction Experiment with Stored Radioactive Beams was successfully performed.
- A "Proof of Principle" of the Experimental Concept with UHV compatible Detectors and Infrastructure around the Internal Target was successfull.
- The Nuclear Matter Density Distribution of ⁵⁶Ni was determined with High Accuracy.
- A Feasibility Study for Investigations of the ISGMR was performed, the Cross Section was measured down to $\Theta_{cm} < 1$ deg.
- EXL@ESR and EXL@FAIR has a large Potential for Nuclear Structure and Nuclear Astrophysics.