Peter Egelhof
 GSI Darmstadt, Germany
 for the EXL Collaboration

$9^{\text {th }}$ Int. Conference on Direct Reactions with Exotic Beams DREB 2016

Halifax, Canada
July 11 - 15, 2016

Peter Egelhof
GSI Darmstadt, Germany
for the EXL Collaboration

9th Int. Conference on Direct Reactions with Exotic Beams DREB 2016

Halifax, Canada
July 11 - 15, 2016

Recent Results on Direct Reactions

 with Stored Radioactive Beams and with-Acitve-TargetsI. Introduction
II. Direct Reactions with RIB`s at Storage Rings -

A new Approach for Low Momentum Transfer Measurements
III. First Experiments and Feasibility Studies at the ESR Storage Ring
a) Elastic Proton Scattering on ${ }^{56} \mathrm{Ni} \Rightarrow$ Nuclear Matter Distribution
b) Inelastic Alpha Scattering on ${ }^{58} \mathrm{Ni} \Rightarrow$ Giant Monopole Resonance
IV. Future Perspectives
V. Conclusions

I. Introduction: Direct Reactions with Radioactive Beams in Inverse Kinematics

classical method of nuclear spectroscopy:
\Rightarrow light ion induced direct reactions: (p,p), (p,p'), (d,p),
\Rightarrow to investigate exotic nuclei: inverse kinematics
\Rightarrow important information at low momentum transfer!
of particular interest:
\Rightarrow radial shape of nuclei: skin, halo structures
\Rightarrow doubly magic nuclei: ${ }^{56} \mathrm{Ni},{ }^{132} \mathrm{Ni}$
\Rightarrow giant resonances: nuclear compressibility
future perspectives at FAIR:
\Rightarrow profit from intensity upgrade (up to 10^{4} !!)
\Rightarrow explore new regions of the chart of nuclides and new phenomena
\Rightarrow use new and powerful methods:
EXL: direct reactions at internal storage ring target \Rightarrow high luminosity even for very low momentum transfer measurements

First Experiments at the ESR

Nuclear Physics with Radioactive Beams at FAIR: NUSTAR: NUclear STructure, Astrophysics and Reactions

I High intensity primary beams from SIS 100 (e.g. $10^{12} 238 \mathrm{U} / \mathrm{sec}$ at $1 \mathrm{GeV} / \mathrm{u}$)

II Superconducting large acceptance Fragmentseparator

Optimized for efficient transport of fission products

III Three experimental areas

Pre-Separator

Main-Separator

High-Energy Cave

Storage Rings

II. Direct Reactions with RIB`s at Storage Rings A new Approach for Low Momentum Transfer Measurements

The EXL Project: EXotic Nuclei Studied in Light-Ion Induced Reactions at the NESR Storage Ring

Light-Ion Induced Direct Reactions at Low Momentum Transfer

- elastic scattering (p,p), (α, α), ...
nuclear matter distribution $\rho(r)$, skins, halo structures
- inelastic scattering ($\left.p, p^{\prime}\right),\left(\alpha, \alpha^{\prime}\right), \ldots$ deformation parameters, $B(E 2)$ values, transition densities, giant resonances
- transfer reactions (p,d), (p,t), (p, $\left.{ }^{3} \mathrm{He}\right),(\mathrm{d}, \mathrm{p}), \ldots$ single particle structure, spectroscopic factors, spectroscopy beyond the driplines, neutron pair correlations, neutron (proton) capture cross sections
- charge exchange reactions (p,n), (${ }^{3} \mathrm{He}, \mathrm{t}$), (d, ${ }^{2} \mathrm{He}$), \ldots Gamow-Teller strength
(knock-out reactions (p,2p), (p,pn), (p, p $\left.{ }^{4} \mathrm{He}\right) \ldots$ ground state configurations, nucleon momentum distributions
for almost all cases:
region of low momentum transfer contains most important information

Speciality of EXL:

measurements at very low momentum transfer \Rightarrow complementary to $\mathrm{R}^{3} \mathrm{~B}$!!!

Experiments to be Performed at Very Low Momentum Transfer Some Selected Examples

- Investigation of Nuclear Matter Distributions:
\Rightarrow halo, skin structure
\Rightarrow probe in-medium interactions at extreme isospin (almost pure neutron matter)
\Rightarrow in combination with electron scattering (ELISe project @ FAIR):
separate neutron/proton content of nuclear matter (deduce neutron skins)
method: elastic proton scattering \Rightarrow at low q : high sensitivity to nuclear periphery

Experiments to be Performed at Very Low Momentum Transfer Some Selected Examples

- Investigation of Nuclear Matter Distributions:
\Rightarrow halo, skin structure
\Rightarrow probe in-medium interactions at extreme isospin (almost pure neutron matter)
\Rightarrow in combination with electron scattering (ELISe project @ FAIR):
separate neutron/proton content of nuclear matter (deduce neutron skins)
method: elastic proton scattering \Rightarrow at low q : high sensitivity to nuclear periphery
- Investigation of the Giant Monopole Resonance:
\Rightarrow gives access to nuclear compressibility \Rightarrow key parameters of the EOS
\Rightarrow new collective modes (breathing mode of neutron skin)
method: inelastic α scattering at low q

Experiments to be Performed at Very Low Momentum Transfer Some Selected Examples

- Investigation of Nuclear Matter Distributions:
\Rightarrow halo, skin structure
\Rightarrow probe in-medium interactions at extreme isospin (almost pure neutron matter)
\Rightarrow in combination with electron scattering (ELISe project @ FAIR): separate neutron/proton content of nuclear matter (deduce neutron skins)
method: elastic proton scattering \Rightarrow at low q ; high sensitivity to nuclear periphery
- Investigation of the Giant Monopole Resonance:
\Rightarrow gives access to nuclear compressibility \Rightarrow key parameters of the EOS
\Rightarrow new collective modes (breathing mode of neutron skin) method: inelastic α scattering at low q
- Investigation of Gamow-Teller Transitions:
\Rightarrow weak interaction rates for $\mathrm{N}=\mathrm{Z}$ waiting point nuclei in the rp-process
\Rightarrow electron capture rates in the presupernova evolution (core collaps)
method: (${ }^{3} \mathrm{He}, \mathrm{t}$), ($\mathrm{d},{ }^{2} \mathrm{He}$) charge exchange reactions at low q

Kinematical Conditions for Light-Ion Induced Direct Reactions in Inverse Kinematics

- required beam energies:
$E \approx 200 \ldots 740 \mathrm{MeV} / \mathrm{u}$
(except for transfer reactions)
- required targets: ${ }^{1,2} \mathrm{H},{ }^{3,4} \mathrm{He}$
- most important information in region of low momentum transfer \Rightarrow low recoil energies of recoil particles
\Rightarrow need thin targets for sufficient angular and energy resolution

Advantage of Storage Rings for Direct Reactions in Inverse Kinematics

- low threshold and high resolution due to: beam cooling, thin target ($10^{14}-10^{15} \mathrm{~cm}^{-2}$)
- gain of luminosity due to: continuous beam accumulation and recirculation
- low background due to: pure, windowless ${ }^{1,2} \mathrm{H}_{2},{ }^{3,4} \mathrm{He}$, etc. targets
- experiments with isomeric beams

Experiments at very low momentum transfer can only be performed at EXL (except with active targets, but with substantial lower luminosity)

III. First Experiments with RIB`s and Feasibility Studies at the ESR Storage Ring

specially designed scattering

 chamber for the ESR:

reactions with ${ }^{58} \mathrm{Ni}$:

proof of principles and feasibility studies:

- UHV capability of detector setup
- background conditions in ESR environment at the internal target
- low energy threshold
- beam and target performance

reactions with ${ }^{56} \mathrm{Ni}$:

${ }^{56} \mathrm{Ni}$: doubly magic nucleus!!

- (p, p) reactions: nuclear matter distribution
- (α, α^{\prime}) reactions: giant resonances (GMR) EOS parameters (nucl. compressibility)
- ($\left.{ }^{3} \mathrm{He}, \mathrm{t}\right)$ reactions: Gamow-Teller matrix elements, important for astrophys.

Theorectical Predictions

4 days with $\mathrm{L}=10^{25} \mathrm{~cm}^{-2} \mathrm{sec}^{-1}$ recoil energies: $1-45 \mathrm{MeV}$

14 days with $L=10^{25} \mathrm{~cm}^{-2} \mathrm{sec}^{-1}$ recoil energies: $200-700 \mathrm{keV}$
needed: large solid angle detectors with low threshold and large dynamic range

Setup at the ESR Storage Ring

UHV Compatibility of the EXL Silicon Array: Concept: using DSSD`s as High Vacuum Barrier

- Differential pumping proposed to separate (N)ESR vacuum from EXL instrumentation (cabling, FEE, other detectors)

Space for other DSSDs, Si(Li), FEE and cabling

Inner shell of DSSDs on support frame forms (bakeable) vacuum barrier
B. Streicher et al., Nucl. Instr. Meth. A654 (2011) 604
M. Mutterer et al., Phys. Scr. T166 (2015) 014053

Experimental Concept

Experimental Concept

. DSSD: 128×64 strips, (6×6) $\mathrm{cm}^{2}, 285 \mu \mathrm{~m}$ thick

- Si(Li): 8 pads, $(8 \times 4) \mathrm{cm}^{2}$, 6.5 mm thick
. active vacuum barrier
- moveable aperture to
 improve angular resolution

Experimental Concept

- Auxilliary vacuum side

- Ultra-high vacuum side

Experimental Setup at the ESR

challenge:
UHV capable and bakeable DSSD and Si(Li) detectors

Scattering Chamber mounted at the Internal Target of the ESR

FRS: In-Flight Separator \& High-Resolution Spectrometer

Direct Reactions with stored RIB`s

Preparation of the Stored Radioactive ${ }^{56} \mathrm{Ni}$ Beam

FRS: fragmentation of $600 \mathrm{MeV} / \mathrm{u}^{58} \mathrm{Ni}$ beam
injection to ESR: $\quad \underline{\mathbf{7 x 1 0 4}}{ }^{56} \mathrm{Ni}$ per injection
stochastic cooling, bunching and stacking (60 injections):
$4.8 \times 10^{6}{ }^{56} \mathrm{Ni}$ in the ring

$$
\begin{aligned}
& \text { electron cooled } \\
& \text { intense stack }
\end{aligned}
$$

beam after stochastic precooling
luminosity: $\quad \mathrm{H}_{2}$ target: $2 \times 10^{13} \mathrm{~cm}^{-2}$
F. Nolden et al.,

Proc. IPAC2013
MOPEA013

$$
\Rightarrow \frac{\mathrm{L}=\mathbf{2} \times 1 \mathbf{1 0}^{26} \mathrm{~cm}^{-2} \mathbf{s e c}^{-1}}{\text { (reduced by aperture) }}
$$

First Results with Radioactive Beam: Elastic Proton Scattering on ${ }^{56} \mathrm{Ni}$

First Nuclear Reaction Experiment with Stored Radioactive Beam!!!!
M. von Schmid et al., Phys. Scr. T166 (2015) 014005
P. Egelhof et al., JPS Conf. Proc. 6 (2015) 020049

First Results with Radioactive Beam: Elastic Proton Scattering on ${ }^{56} \mathrm{Ni}$
${ }^{56} \mathrm{Ni}(\mathrm{p}, \mathrm{p}), \mathrm{E}=390 \mathrm{MeV} / \mathrm{u}$ Reconstructed Energy

First Results with Radioactive Beam: Elastic Proton Scattering on ${ }^{56} \mathrm{Ni}$
${ }^{56} \mathrm{Ni}(\mathrm{p}, \mathrm{p}), \mathrm{E}=390 \mathrm{MeV} / \mathrm{u} \quad$ Benefit of the 1 mm Aperture

First Results with Radioactive Beam: Elastic Proton Scattering on ${ }^{56} \mathrm{Ni}$
${ }^{56} \mathrm{Ni}(\mathrm{p}, \mathrm{p}), \mathrm{E}=390 \mathrm{MeV} / \mathrm{u}$ Identification of Inelastic Scattering

First Results with Radioactive Beam: Elastic Proton Scattering on ${ }^{56} \mathrm{Ni}$
${ }^{56} \mathrm{Ni}(\mathrm{p}, \mathrm{p}), \mathrm{E}=390 \mathrm{MeV} / \mathrm{u}$ Angular Distribution

M. v. Schmid, PHD thesis 2015

Concept of the Data Analysis

- Glauber multiple-scattering theory for calculation of cross sections:
- use measured free pp, pn-cross sections as input (in medium effects negligible)
- fold with nucleon density distribution
- take into account multiple scattering (all terms!) (small for nuclear periphery)
- variation of the nuclear matter density distribution:
a) phenomenological parametrizations (point matter densities):

SF: Symmetrized Fermi
b) "model independent" analysis:

SOG: Sum Of Gaussians
(standard method for electron scattering data:
I. Sick, Nucl. Phys. A 218 (1974) 509)
${ }^{56} \mathrm{Ni}(\mathrm{p}, \mathrm{p}), \mathrm{E}=390 \mathrm{MeV} / \mathrm{u}$ Angular Distribution Cross Section fitted using the Glauber Theory

M. v. Schmid, PHD thesis 2015

Nuclear Matter Density Distribution of ${ }^{56} \mathrm{Ni}$ from Elastic Proton Scattering

Nuclear Matter Distribution of ${ }^{56} \mathrm{Ni}$
 Cross Section fitted using the Glauber Theory

- Symmetrised Fermi density parametrisation: $\rho_{\mathrm{SF}}(r)=\rho_{0} \frac{\sinh \left(\frac{R}{d}\right)}{\cosh \left(\frac{r}{d}\right)+\cosh \left(\frac{R}{d}\right)}$

M. v. Schmid, PHD thesis 2015

Nuclear Matter Density Distribution of ${ }^{56} \mathrm{Ni}$ from Elastic Proton Scattering

Nuclear Matter Distribution of ${ }^{56} \mathrm{Ni}$
Cross Section fitted using the Glauber Theory

reaction: ${ }^{58} \mathrm{Ni}$ on He target
energy: $100 \mathrm{MeV} / \mathrm{u}$
target: $\quad 8 \times 10^{12} / \mathrm{cm}^{3}$
detectors: DSSD

$$
\Theta_{\mathrm{Lab}}=27^{\circ}-38^{\circ}
$$

PIN diodes

$$
\Theta_{\mathrm{Lab}}=0.2^{\circ}-1^{\circ}
$$

Feasibility Study:
Investigation of the Giant Monopole Resonance in ${ }^{58} \mathrm{Ni}$

challenge: detect and identify very low energy recoils

Feasibility Study:
Investigation of the Giant Monopole Resonance in ${ }^{58} \mathrm{Ni}$

J. C. Zamora, PHD thesis 2015

Feasibility Study:

Investigation of the Giant Monopole Resonance in ${ }^{58} \mathrm{Ni}$

J. C. Zamora, PHD thesis 2015

data down to $\Theta_{\mathrm{cm}}<1 \mathrm{deg}$!
comparison with data obtained in normal kinematics and with predictions

IV. Future Perspectives

short term perspectives:

- ($\alpha, \alpha^{`}$) on ${ }^{56} \mathrm{Ni} \Rightarrow$ investigate ISGMR, compressibility of nuclear matter
- $\left({ }^{3} \mathrm{He}, \mathrm{t}\right)$ and $\left(\mathrm{d},{ }^{2} \mathrm{He}\right)$ on ${ }^{56} \mathrm{Ni} \Rightarrow$ investigate Gamow - Teller strength
- (p,p) on heavier Ni and Sn isotopes \Rightarrow nuclear matter distributions, skins
- transfer reactions at Cryring (GSI) and TSR@ISOLDE (CERN)

upgrade of detector setup

 and readout:

Future Perspectives

long term perspectives (EXL @ FAIR):

- for first phase of FAIR:
\Rightarrow install EXL at the HESR
\Rightarrow and/or install transfer line from SUPER-FRS / CR to the ESR

The E105 Collaboration

S. Bagachi ${ }^{1}$, S. Bönig ${ }^{2}$, M. Castlós ${ }^{3}$, I. Dillmann ${ }^{4}$, C. Dimopoulou ${ }^{4}$, P. Egelhof ${ }^{4}$, V. Eremin ${ }^{5}$, H. Geissel ${ }^{4}$, R. Gernhäuser ${ }^{6}$, M.N. Harakeh ${ }^{1}$, A.-L. Hartig ${ }^{2}$, S. Ilieva², N. Kalantar-Nayestanaki¹, O. Kiselev ${ }^{4}$, H. Kollmus ${ }^{4}$, C. Kozhuharov ${ }^{4}$, A. Krasznahorkay ${ }^{3}$, T. Kröll², M. Kuilman¹, S. Litvinov ${ }^{4}$, Yu.A. Litvinov ${ }^{4}$, M. Mahjour-Shafiei ${ }^{1}$, M. Mutterer ${ }^{4}$, D. Nagae ${ }^{8}$, M.A. Najafi ${ }^{1}$, C. Nociforo ${ }^{4}$, F. Nolden ${ }^{4}$, U. Popp ${ }^{4}$, C. Rigollet ${ }^{1}$, S. Roy ${ }^{1}$, C. Scheidenberger ${ }^{4}$, M. von Schmid ${ }^{2}$, M. Steck ${ }^{4}$, B. Streicher ${ }^{2,4}$, L. Stuhl ${ }^{3}$, M. Takechi ${ }^{4}$, M. Thürauf ${ }^{2}$, T. Uesaka ${ }^{9}$, H. Weick ${ }^{4}$, J.S. Winfield ${ }^{4}$, D. Winters ${ }^{4}$, P.J. Woods ${ }^{10}$, T. Yamaguchi ${ }^{11}$, K. Yue ${ }^{4,7}$, J.C. Zamora ${ }^{2}$, J. Zenihiro ${ }^{9}$
${ }^{1}$ KVI, Groningen
${ }^{2}$ Technische Universität Darmstadt
${ }^{3}$ ATOMKI, Debrecen
${ }^{4}$ GSI, Darmstadt
${ }^{5}$ Ioffe Physico-Technical Institute, St.Petersburg ${ }^{6}$ Technische Universität München
${ }^{7}$ Institute of Modern Physics, Lanzhou
${ }^{8}$ University of Tsukuba
${ }^{9}$ RIKEN Nishina Center
${ }^{10}$ The University of Edinburgh
${ }^{11}$ Saitama University

V. Conclusions

- For the First Time (World Wide) a Nuclear Reaction Experiment with Stored Radioactive Beams was successfully performed.
- A "Proof of Principle" of the Experimental Concept with UHV compatible Detectors and Infrastructure around the Internal Target was successfull.
- The Nuclear Matter Density Distribution of ${ }^{56} \mathrm{Ni}$ was determined with High Accuracy.
- A Feasibility Study for Investigations of the ISGMR was performed, the Cross Section was measured down to $\Theta_{\mathrm{cm}}<1$ deg.
- EXL@ESR and EXL@FAIR has a large Potential for Nuclear Structure and Nuclear Astrophysics.

