Probing nuclear sizes of unstable nuclei with total reaction cross sections

Direct Reactions with Exotic Beams (DREB) 2016 Saint Mary's University, Halifax, Canada 2016.7.11-15

> Wataru Horiuchi Hokkaido University, Japan

Systematic analysis of total reaction cross sections

- Total reaction cross section: $\sigma_R \Leftrightarrow$ Size of nucleus
- Recent advances in RI beam facilities
 - $\dots, C, O \rightarrow Ne, Mg, \dots$ isotopes
 - Special features in unstable nuclei
 - Deformation, halo, skin, etc.
- Systematic study of σ_R for unstable nuclei
 - Reaction: Glauber theory
 - Microscopic high-energy scattering theory
 - Optical Limit Approximation, Input: nuclear densities
 - Structure: Skyrme-Hartree-Fock method on 3D mesh
 - Nuclear deformation
 - Cover a wide mass range

How to probe neutron-skin thickness?

• Neutron skin-thickness

$$\delta(N,Z) = r_n(N,Z) - r_p(N,Z),$$

- Nuclear isovector size properties
- Close connection to the equation of state (EOS) of asymmetric nuclear matter and mass of a neutron star
- Poorly known, difficult to probe
 - PREX: S. Abrahamyan et al., PRL108, 112502 (2012)
 - (p,p'), polarizability of ²⁰⁸Pb A. Tamii et al., PRL107, 062402 (2011)
 - Proton elastic scatterings
 - S. Terashima et al., Phys. Rev. C 77, 024312 (2008)
 - J. Zenihiro et al., Phys. Rev. Lett. 107, 062502 (2011)
- Electron-scattering of unstable nuclei (plans: SCRIT, ELISe)

T. Suda, M. Wakasugi, PPNP, 55 417 (2005), A.N. Antonov et al., NIMA637, 60 (2011)

- Total reaction cross section ⇔ Size of nucleus
 - Easy to measure, applicable to almost all nuclei

 \rightarrow Possible measure of skin-thickness?

- Charge changing cross sections
 - ¹²C target is promising

Y. Suzuki, WH et al., Phys. Rev. C94, 011692(R) (2016)

Reaction cross section in the Glauber model

✓ S^P

Final state wave function

$$\Psi_f = e^{i\chi(\boldsymbol{b})}\Psi_i$$

Total reaction cross section

$$\sigma_R = \int d\boldsymbol{b} \left(1 - |\mathrm{e}^{\mathrm{i}\chi(\boldsymbol{b})}|^2\right)$$

Phase shift function

$$e^{i\chi(\boldsymbol{b})} = \left\langle \Phi_0^P \Phi_0^T \right| \prod_{i=1}^{A_P} \prod_{j=1}^{A_T} \left[1 - \Gamma_{NN} (\boldsymbol{s}_i^P - \boldsymbol{s}_j^T + \boldsymbol{b}) \right] \left| \Phi_0^P \Phi_0^T \right\rangle$$

Profile function $\Gamma_{NN}(b) = \frac{1 - i\alpha}{4\pi\beta} \sigma_{NN}^{\text{tot}} \exp\left(-\frac{b^2}{2\beta}\right)$

α, β: determined so as to reproduce the NN scattering B. Abu-Ibrahim et al., PRC77, 034607 (2008)

Phase-shift function: Many-body operator Approximate using a cumulant expansion

→ Input: Nuclear density and Profile function no adjustable parameters

Projectile (P)

OLA vs. NTG: ¹²C-¹²C collision

Optical Limit Approximation (OLA)

$$e^{i\chi_{OLA}(\boldsymbol{b})} = \exp\left[-\iint d\boldsymbol{r}^P d\boldsymbol{r}^T \rho_P(\boldsymbol{r}^P)\rho_T(\boldsymbol{r}^T)\Gamma_{NN}(\boldsymbol{s}^P - \boldsymbol{s}^T + \boldsymbol{b})\right]$$

Nucleon-Target profile function in the Glauber model (NTG)

Systematic analysis of unstable nuclei

- Skyrme-Hartree-Fock on 3D mesh
 - Skyrme interactions
 - SkM*: well account for deformations
 - SLy4: total binding energies
 - One-body density $\rho(r)$
 - O, Ne, Mg, Si, S isotopes
 ρ(r)=∫ρ(r)dΩ
 - Center of mass motion

$$\int dr x \rho(r) = \int dr y \rho(r) = \int dr z \rho(r) = 0,$$
$$\int dr x y \rho(r) = \int dr y z \rho(r) = \int dr z x \rho(r) = 0.$$

New σ_R data available: PRC89, 044610 (2014)

Probing neutron-skin thickness with σ_R

• Total reaction cross section, σ_R : Glauber model ¹H and ¹²C target Reaction cross section: $\sigma_R(E) = \pi [R_P + R_T + \Delta(E)]^2$

 \rightarrow "reaction radius" $a_R = (\sigma_R(E)/\pi)^{1/2}$

Density distribution: Skyrme-Hartree-Fock on 3D coordinate space

Systematic calculation for a wide mass range

→ 91 even-even nucleus with A=14-86, Z=8-16, 20, 28 for SkM* and SLy4

Reaction radius $a_R(N, Z, E, T) = \sqrt{\sigma_R(N, Z, E, T)/\pi}$, vs. matter radius $r_m(N, Z) = \sqrt{\frac{Z}{A}r_p^2(N, Z) + \frac{N}{A}r_n^2(N, Z)}$,

• Linearity on the matter radius

• Scattered distributions for ¹H target

Δa_R vs. skin thickness δ

Difference between two reaction radii with different incident energies

 $\Delta a_R(N, Z, E', E) = a_R(N, Z, E') - a_R(N, Z, E)$

Four energies are chosen: 100, 200, 550, 1000 MeV/u Δa_R (E'<E) ¹H: Linearities for all energy sets \rightarrow sensitivity to δ ¹²C: Constant behavior \rightarrow No sensitivity to δ

Least squares fitting of reaction radius $a_R(N, Z, E) = \alpha(E)r_m(N, Z) + \beta(E)\delta(N, Z) + \gamma(E)$

- Weak energy dependence of α(E)
 - β(E): Proton is sensitive to δ No sensitivity to δ for ¹²C
- γ(E): Similar trend
- Universal functions
 - No isotope dependence
 - Two Skyrme interactions give the virtually the same results

We can extract neutron-skin thickness and matter radius by measuring σ_R at different energies.

E< 200 and E>550 are recommended

Possible ways to extract matter and skin thickness

- Measure the cross sections on ¹H at different *E*
 - Assume model density, e.g. Fermi-type, etc.
 - Do cross section calculations
 - Determine the parameters which reproduce the two cross section simultaneously
- Or measure the cross sections on ¹H and ¹²C

Sensitivity to nuclear distributions

Fermi-type analysis: ¹²C target case

p-⁴⁰Si total reaction cross sections in unit of b

$(a_p,a_n)\backslash E$	100	140	160	200	300	425	550	800	1000
(0.5, 0.5)	1.73	1.62	1.58	1.52	1.45	1.44	1.48	1.55	1.56
(0.6, 0.6)	1.78	1.66	1.62	1.56	1.48	1.47	1.51	1.59	1.60
(0.7, 0.7)	1.84	1.71	1.67	1.60	1.52	1.51	1.55	1.64	1.65
(0.5, 0.7)	1.80	1.68	1.64	1.57	1.49	1.48	1.53	1.61	1.62
HF(SkM*)	1.74	1.63	1.59	1.53	1.45	1.44	1.49	1.56	1.57

- ¹²C probes more details of the size properties
- Uncertainty $\sim 5\% \rightarrow$ the former way is better

Nuclear sizes of heavier nuclei

- Extension to medium to heavier nuclei
 - Systematic analysis
 - Skyrme-Hartree-Fock+BCS on 3D mesh
 - 103 species ⁴⁰⁻⁶⁰Ca, ⁵⁶⁻⁸⁴Ni, ⁸⁰⁻¹²²Zr, ¹⁰⁰⁻¹⁴⁰Sn, ¹⁵⁶⁻¹⁹⁶Yb, ¹⁹⁰⁻²¹⁴Pb
 - 3 kinds of Skyrme interactions (SkM*, SLy4, SkI3)
 - Coulomb breakup effect?
 - Does "Universality" still hold?

 $a_R(N, Z, E) \simeq \alpha(E) r_m(N, Z) + \beta(E) \delta(N, Z) + \gamma(E),$

 $\sigma_{R}(N, Z, E) \rightarrow$ "Reaction radius" $a_{R}(N, Z, E) = \sqrt{\sigma_{R}(N, Z, E)/\pi}$

Estimate of Coulomb breakup

Divergent problem of Glauber theory at large distances \leftarrow adiabatic approx. Systematic analysis \rightarrow Simple method Equivalent Photon Method

C. A. Bertulani, G. Baur, Phys. Rep. 163 299, (1988).

- Dissociation from the Coulomb source(Target; charge $Z_{T}e$)
- Widely used for Coulomb breakup of halo nuclei

Reaction probability $P_C(b) = \int_0^\infty d\omega N(b,\omega)\sigma_\gamma(\omega)$

Photon number
$$N(\boldsymbol{b},\omega) = \frac{Z_T^2 e^2}{\pi^2 \hbar c} \left(\frac{c}{v}\right)^2 \frac{\xi^2}{\omega b^2} \left[K_1^2(\xi) + \frac{1}{\gamma^2} K_0^2(\xi)\right]$$

 $\xi = b\omega/(\gamma v)$

Electric dipole (E1) responses obtained with Canonical-basis Time-Dependent Hartree-Fock-Bogoliubov (Cb-TDHFB)

S. Ebata et al., Phys. Rev. C 82, 034306(2010)

Photoabsorption cross section $\sigma_{\gamma}(\omega) = \frac{16\pi^2}{9} \frac{\omega}{c} \frac{dB(E1)}{dE}$

Coulomb breakup cross section

$$\sigma_C = \int_{|b| \ge b_{\min}} db P_C(b)$$

 $b_{\min} \thicksim \sqrt{5/3} (r_m^P \! + \! r_m^T)$

Interference term \rightarrow small

B. Abu-Ibrahim, Y. Suzuki, PRC62, 034608 (2000)

Nuclear breakup + Coulomb breakup of projectile and target

Contribution of Coulomb breakup (E1 approximation)

- Fraction of Coulomb breakup cross section to total reaction cross sections (σ_c/σ_R)
 - Proton target (less than about 0.1%)
 - ¹²C target (at most 7%)
 - ²H target (at most 10%)
 - Target excitation dominance
 - ⁴He target (at most 2.5%)
 - Target preparation?

Proton target

→ Complicated Coulomb breakup can be avoided Advantageous to extract the sizes of heavy nuclei

 $a_R(N, Z, E) \simeq \alpha(E) r_m(N, Z) + \beta(E) \delta(N, Z) + \gamma(E),$

Summary

- Systematic analysis of total reaction cross sections (σ_R)
 - More than 100 isotopes with Skyrme-Hartree-Fock (+BCS) method
 - Three kinds of Skyrme interactions (SkM*, SLy4, SkI3)
 - No adjustable parameters in the structure and reaction theory
- Matter radius ⇔ Total reaction cross sections on ¹²C
 - Nuclear deformation, halo, etc.
 - Almost no sensitivity to the neutron-skin thickness
- Proton and neutron radii \Leftrightarrow Energy dependence of σ_R on proton
 - Coulomb excitation negligible
 - "Reaction radius" of proton target $a_R(N, Z, E) = \sqrt{\sigma_R(N, Z, E)/\pi}$
 - \rightarrow two-valued linear function of matter radius and skin thickness

 $a_R(N, Z, E) \simeq \alpha(E) r_m(N, Z) + \beta(E) \delta(N, Z) + \gamma(E),$

Universal function of incident energy E, no dependence on density profiles

Acknowledgments

- Collaborators
 - Shuichiro Ebata (Hokkaido Univ., Nuclear Data Center)
 - Shinya Hatakeyama (Hokkaido Univ.)
 - Tsunenori Inakura (Niigata Univ.)
 - Takashi Nakatsukasa (Univ. of Tsukuba)
 - Yasuyuki Suzuki (Niigata Univ., RIKEN)
- References
 - Nuclear deformation
 - W.H., T.Inakura, T. Nakatsukasa, Y. Suzuki, Phys. Rev. C 86, 024614 (2012)
 - Neutron-skin thickness
 - W.H., Y. Suzuki, T.Inakura, Phys. Rev. C 89, 011601(R) (2014)
 - W.H., S. Hatakeyama, S. Ebata, Y. Suzuki, Phys. Rev. C 93, 044611 (2016)