

Locations of breakup in reactions near the fusion barrier

Edward Simpson

Department of Nuclear Physics The Australian National University

Above barrier fusion suppression

Dasgupta et al., PRC 66, 041602(R) (2002); PRC 70, 024606 (2004); Wu et al., PRC 68 044605 (2004)

Reactions above barrier

Is this the complete picture? Do other processes cause breakup?

Where does breakup occur?

By measuring at **below barrier energies** we can test our understanding of which processes lead to breakup.

Experiment: Fragment Detection

BALiN array

Double-Sided Silicon Strip Detectors

In this "lampshade" configuration sensitive only to backward angles

 $115^{\circ} < \theta < 170^{\circ}$ $30^{\circ} < \phi < 330^{\circ}$

See D. H. Luong, ANU PhD Thesis (2012)

Determined breakup modes

Luong *et al.*, PRC <u>88</u>, 034609 (2013)

Relative energy distribution

$$E_{rel} = \frac{1}{2} \mu v_{12}^2$$

Delayed and prompt breakup

Delayed Breakup

Disintegration far from the target following the population of a longlived resonance state.

Prompt breakup

Disintegration near to the distance of closest approach. Large interaction between fragments and target.

Incoming trajectory

R_o

Outgoing trajectory

Expect differences in opening angle θ_{12} and relative energy E_{rel} ? Large E_{rel} correspond to earlier disintegration?

 α_{2}

Plus, asymptotic \equiv very long-lived states

Relative energy distribution

Can we understand the prompt breakup component?

Post breakup acceleration

Suppose prompt breakup originates in the 2^+ resonance, with well defined initial E_x :

Sensitivity to target proximity

- Near target gives greater acceleration
- Larger changes in final E_{rel} w.r.t E_x

• Final E_{rel} closer to of E_x

Post breakup acceleration

Suppose prompt breakup originates in the 2^+ resonance, with well defined initial E_x :

Sensitivity to orientation

- Aligned perpendicular to the target field, leads to larger E_{rel}
- Aligned parallel to the target field, acceleration tells to reduce the final relative energy E_{rel}

⁷Li+⁵⁸Ni : β vs θ_{12}

⁷Li+⁵⁸Ni : β vs θ_{12}

Monte Carlo simulations

Assume a fixed E_x and R_{BU} and study how β vs. θ_{12} correlation changes.

Real nuclear interactions from Sao Paulo potential, though sensitivity low due to sub-barrier energy.

Uses a modified version of the PLATYPUS code to track target, projectile and fragment trajectories.

 α_{2}

Assume a fixed E_x and R_{BU} and study how β vs. θ_{12} correlation changes.

For each point $R_{BU}=R_0+\Delta r$ vary orientation initial relative momentum of the α -particles

 $L_{PT} = 0$ (central collision)

Near target breakup

Breakup distances

Full Monte Carlo simulations

⁸Be 2⁺ resonance

Reaction point

⁸Be decay point

Experimental data

Simulation assuming instant decay

Simulation incorporating lifetime

Summary

- Sub-barrier breakup tells us that lifetimes of short-lived states play a role in determining where breakup occurs
- This has consequences for fusion can the break up happen fast enough to cause fusion suppression, contribute to ICF?
- Not all break up modes are the same

Fusion and incomplete fusion

- With an immutable ⁸Be, the delayed breakup will clearly affect incomplete fusion how important are tidal forces?
- Can we systematically understand sub-barrier breakup for other light projectiles such as ⁶Li and ⁹Be?
- Predictions for complete and incomplete fusion at above barrier energies

Acknowledgements

Australian National University

M. Dasgupta, K.J. Cook, I. P. Carter, D. J. Hinde, Sunil Kalkal, and D.H. Luong

European Centre for Theoretical Studies in Nuclear Physics and Related Areas

Alexis Diaz-Torres

