Elastic scattering of weakly-bound nuclei $^8{\rm B}$ and $^{9,10,11}{\rm C}$ on $^{nat}{\rm Pb}$ target

Yanyun Yang

Institute of Modern Physics, Chinese Academy of Sciences

Jul.15, 2016

- Motivation
- Experimental setup
- Results and discussion
- Summary

▲御▶ ▲臣▶ ★臣▶

Motivation

Elastic scattering is an ideal tool to study exotic nuclei

Many elastic scattering measurements using the neutron-rich nuclei ⁶He, ¹¹Be and ¹¹Li around the Coulomb barriers have been performed.

- Coulomb Nuclear Interference Peaks (CNIP) for ¹¹Be is suppressed.
- The effect of the breakup on elastic scattering is strong.

A. Di Pietro et al., Phys. Rev. Lett. 105, 022701 (2010)

< □ > < □ >

Motivation

Elastic scattering is an ideal tool to study exotic nuclei

Many elastic scattering measurements using the neutron-rich nuclei ⁶He, ¹¹Be and ¹¹Li around the Coulomb barriers have been performed.

- Coulomb Nuclear Interference Peaks (CNIP) for ¹¹Be is suppressed.
- The effect of the breakup on elastic scattering is strong.

A. Di Pietro et al., Phys. Rev. Lett. 105, 022701 (2010)

How about proton-halo nuclei ? At above-barrier energies ?

Experimental setup

RIBLL (Radioactive Ion Beam Line in Lanzhou) is a typical Projectile Fragmentation(PF)type facility. RIBLL has three focal points (T0,T1 and T2)and two focal planes(C1 and C2).

< 4 (1) → (1) = (1)

DREB - 2016 Y.Y.Yang - IMPCAS

Experimental setup

RIBLL (Radioactive Ion Beam Line in Lanzhou) is a typical Projectile Fragmentation(PF)type facility. RIBLL has three focal points (T0,T1 and T2)and two focal planes(C1 and C2).

The incoming beam were reconstructed by two position-sensitive Parallel-Plate Avalanche Counters (PPACs). The scattered particles were detected with two silicon detector ΔE -E telescopes.

DREB - 2016 Y.Y.Yang - IMPCAS

⁸B elastic scattering

- The Coulomb Nuclear Interference Peak (CNIP) is not suppressed.
- The effect of the breakup on elastic scattering is small.

⁸B elastic scattering

- The Coulomb Nuclear Interference Peak (CNIP) is not suppressed.
- The effect of the breakup on elastic scattering is small.

Y.Y.Yang, J.S.Wang et al., PRC 87, 044613 (2013)

The very low breakup threshold (0.1375 MeV for ${}^8B \longrightarrow {}^7Be + p$) has a small influence on the elastic scattering.

^{9,10,11}C elastic scattering

Similar with ⁸B ! !

 10,11 C: Y.Y.Yang, J.S.Wang et al., PRC 90, 014606 (2014)

⁹C: preliminary data

⁸B and ¹¹Be elastic scattering

- valence proton
- $\bullet \sim$ 3.3 the Coulomb barrier
- heavy target ^{nat}Pb

valence neutron \sim 1.4 the Coulomb barrier medium target - 64 Zn

⁸B and ¹¹Be elastic scattering

- valence proton
- \sim 3.3 the Coulomb barrier
- heavy target ^{nat}Pb

valence neutron \sim 1.4 the Coulomb barrier medium target - $^{64}{\rm Zn}$

More investigation on the influence of valence particle, energy and target is required.

CDCC calculations for ⁸B and ¹¹Be - valence particle

For neutron-rich projectiles, the breakup coupling effect is remarkable.

DREB - 2016 Y.Y.Yang - IMPCAS

・ 同 ト ・ ヨ ト ・ ヨ ト

CDCC calculations for ⁸B and ¹¹Be - energy

At lower energies, the breakup coupling effect is stronger.

DREB - 2016 Y.Y.Yang – IMPCAS

イロト イボト イヨト イヨト

CDCC calculations for ⁸B and ¹¹Be - target

For ⁸B: no influence; For ¹¹Be: the coupling effect is stronger on heavier target.

DREB - 2016 Y.Y.Yang - IMPCAS

CDCC calculations for ⁸B and ¹¹Be

DREB - 2016 Y.Y.Yang - IMPCAS

・ロト・西・・田・・田・ うくの

- A measuremental method was presented at RIBLL. The elastic scattering angular distributions of ⁸B and ^{9,10,11}C on ^{nat}Pb target were measured at above-barrier energies.
- The measured data shows that the Coulomb Nuclear Interference Peak (CNIP) is not suppressed, in contract to what was observed in the scattering of ¹¹Be.
- The effect of the breakup on elastic scattering was studied to investigate the influence of valance, energy and target.

- Institute of Modern Physics, Chinese Academy of Sciences: Jiansong Wang, Junbing Ma, Peng Ma, Shilun Jin, Qi Wang
- China Institute of Atomic Energy (CIAE): Chengjian Lin, Xinxing Xu, Huiming Jia
- Beihang University: Danyang Pang
- The Andrzej Sołtan Institute ,Warsaw, Poland: N. Keeley, K. Rusek
- M. S. University of Baroda, India: S. Mukherjee

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

Thanks for your attention!

DREB - 2016 Y.Y.Yang – IMPCAS

・ロト ・回 ト ・ヨト ・ヨト

æ