Two-neutron halo in light drip-line nuclei from the low-energy limit of neutron-neutron interaction

Toshio Suzuki
Nihon University, Tokyo

Takaharu Otsuka, Cenxi Yuan, Navin Alahari (Univ. of Tokyo) (SunYat-Sen Univ.) (GANIL)

DREB 2016, Halifax July 12, 2016

O Carbon isotopes

${ }^{21} \mathrm{C}=$ unbound
${ }^{22} \mathrm{C}=$ drip-line nucleus \& 2 n -halo nucleus How ${ }^{22} \mathrm{C}$ become bound?
Neutron-neutron interaction plays an important role!
Mechanism of forming two-neutron halo from the lowenergy limit of $\mathrm{n}-\mathrm{n}$ interaction

1. 3 -body model for core $+2 n$ system with low-energy limit of n-n interaction
2. Application to ${ }^{24} \mathrm{O}$
$\mathrm{S}_{2 \mathrm{n}}$ and matter radius
3. Application to ${ }^{22} \mathrm{C}$

- Closed-core approximation for ${ }^{20} \mathrm{C}: 1 \mathrm{p}^{10} \nu 1 \mathrm{~d}_{5 / 2}{ }^{6}$
- Correlated-core model for ${ }^{20} \mathrm{C}$: mixing of $2 \mathrm{~s}_{1 / 2}$-orbit $\mathrm{S}_{2 \mathrm{n}}$ vs. neutron halo radius density of halo neutron
$\mathrm{S}_{2 \mathrm{n}}$ vs. $\left\langle\mathrm{v}_{\mathrm{nn}}\right\rangle$: condition for ${ }^{21} \mathrm{C}$ to be unbound \rightarrow halo radius is estimated to be 6-7 fm, which is small compared with previous estimations
Spectra of ${ }^{22} \mathrm{C}$ for closed and correlated-cores

4. Comments on Efimov states
T. Suzuki, T. Otsuka, C. Yuan and Navin Alahari, Phys. Lett. B753, 199 (2016)

$$
\begin{aligned}
& { }^{22} \mathrm{C}={ }^{20} \mathrm{C}+\mathrm{n}+\mathrm{n} \\
& { }^{21} \mathrm{C}={ }^{20} \mathrm{C}+\mathrm{n} \text { : unbound } \\
& \varepsilon>0 \\
& \mathrm{E}_{\mathrm{nn}}=2 \varepsilon+\mathrm{V} \\
& =2(\varepsilon+\mathrm{V})-\mathrm{V} \\
& <0 \Leftrightarrow{ }^{22} \mathrm{C} \text { : bound } \\
& \mathrm{H}=\mathrm{t}_{1}+\mathrm{u}\left(\overrightarrow{\mathrm{r}}_{1}\right)+\mathrm{t}_{2}+\mathrm{u}\left(\overrightarrow{\mathrm{r}}_{2}\right)+\mathrm{v}_{\mathrm{nn}}\left(\overrightarrow{\mathrm{r}}_{1}-\overrightarrow{\mathrm{r}}_{2}\right) \\
& \mathrm{h}_{1}=\mathrm{t}_{1}+\mathrm{u}\left(\overrightarrow{\mathrm{r}}_{1}\right) ; \quad \mathrm{u}(\mathrm{r})=\text { Woods }- \text { Saxon potential } \\
& \left\{\mathrm{h}_{1}+\mathrm{h}_{2}+\mathrm{v}_{\mathrm{nn}}\left(\overrightarrow{\mathrm{r}}_{1}-\overrightarrow{\mathrm{r}}_{2}\right)\right\} \phi\left(\overrightarrow{\mathrm{r}}_{1}\right) \phi\left(\overrightarrow{\mathrm{r}}_{2}\right)=\mathrm{E}_{\mathrm{nn}} \phi\left(\overrightarrow{\mathrm{r}}_{1}\right) \phi\left(\overrightarrow{\mathrm{r}}_{2}\right), \quad \mathrm{S}_{2 \mathrm{n}}=-\mathrm{E}_{2 \mathrm{n}} \\
& \phi\left(\vec{r}_{1}\right)=\phi\left(\vec{r}_{2}\right) \equiv \phi(\overrightarrow{\mathrm{r}}) \\
& \varepsilon=<\phi(\overrightarrow{\mathrm{r}})|\mathrm{h}(\overrightarrow{\mathrm{r}})| \phi(\overrightarrow{\mathrm{r}})> \\
& \{\mathrm{h}+\mathrm{w}(\overrightarrow{\mathrm{r}})\} \phi(\overrightarrow{\mathrm{r}})=\left(\mathrm{E}_{\mathrm{nn}}-\varepsilon\right) \phi(\overrightarrow{\mathrm{r}}) \\
& \mathrm{w}(\overrightarrow{\mathrm{r}})=<\phi\left(\overrightarrow{\mathrm{r}}^{\prime}\right)\left|\mathrm{v}_{\mathrm{nn}}\left(\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{r}}^{\prime}\right)\right| \phi\left(\overrightarrow{\mathrm{r}}^{\prime}\right)> \\
& \mathrm{E}_{\mathrm{nn}}=2 \varepsilon+\mathrm{V} \\
& \mathrm{~V}=<\phi(\overrightarrow{\mathrm{r}})|\mathrm{w}(\overrightarrow{\mathrm{r}})| \phi(\overrightarrow{\mathrm{r}})>=<\phi(\overrightarrow{\mathrm{r}}) \phi\left(\overrightarrow{\mathrm{r}}^{\prime}\right)\left|\mathrm{v}_{\mathrm{nn}}\left(\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{r}}^{\prime}\right)\right| \phi(\overrightarrow{\mathrm{r}}) \phi\left(\overrightarrow{\mathrm{r}}^{\prime}\right)> \\
& \mathrm{E}_{\mathrm{nn}}-\varepsilon=\varepsilon+\mathrm{V} \equiv-\mathrm{S}_{\mathrm{ln}} \\
& \mathrm{~S}_{2 \mathrm{n}}=-2(\varepsilon+\mathrm{V})+\mathrm{V}=2 \mathrm{~S}_{1 \mathrm{n}}+\mathrm{V} \\
& \phi(r) \propto \exp (-\eta r) / r \\
& \eta=\sqrt{2 \mathrm{~m}\left|\mathrm{E}_{\mathrm{nn}}-\varepsilon\right|} / \hbar=\sqrt{\mathrm{m}\left|-\mathrm{S}_{2 \mathrm{n}}+\mathrm{V}\right|} / \hbar
\end{aligned}
$$

$\mathrm{n}-\mathrm{n}$ interaction in the low energy limit: $\mathrm{a}_{\mathrm{nn}}=-18.9 \pm 0.4 \mathrm{fm}, \mathrm{r}_{\mathrm{nn}}=2.75 \pm 0.11 \mathrm{fm}$ $\mathrm{v}_{\mathrm{nn}}(\mathrm{r})=-\mathrm{v}_{0} \exp \left(-\left(\mathrm{r} / \mathrm{r}_{0}\right)^{2}\right), \quad \mathrm{r}_{0}=1.795 \mathrm{fm}$
R. Machleidt, Plys. Rev. C 63 (2001) 024001;
G.A. Miller, M.K. Netkens, I. Slaus, Phys. Rep, 194 (1990) I;
C.R. Howell, er all, Phys. Leri. B 444 (1998) 252;
D.E. Gomalez Trower, et al., Plys, Rev, Lett. 83 (1999) 3788.

$$
\begin{aligned}
& { }^{24} \mathrm{O}={ }^{22} \mathrm{O}+\mathrm{n}+\mathrm{n} \\
& { }^{23} \mathrm{O}={ }^{22} \mathrm{O}+\mathrm{n} \text { : bound } \quad \varepsilon<0
\end{aligned}
$$

RMS matter radius (fm)

	present	Ozawa 22	Kanungo $^{\text {b }}$
${ }^{22} \mathrm{O}:$	2.85	2.88 ± 0.06	2.75 ± 0.15
${ }^{23} \mathrm{O}:$	2.97	3.20 ± 0.04	2.95 ± 0.23
${ }^{24} \mathrm{O}:$	3.03	3.19 ± 0.13	

a) Ozawa et al., NP A691, 599 (2001)

b) Kanungo et al., PR C 84, 061304 (2011)
${ }^{22} \mathrm{C}={ }^{20} \mathrm{C}+\mathrm{n}+\mathrm{n}: \quad{ }^{20} \mathrm{C}=$ closed - core $=1 \mathrm{p}^{10} \vee 1 \mathrm{~d}_{5 / 2}{ }^{6}\left(0^{+}\right)$

$$
\begin{aligned}
& \mathrm{w}(\overrightarrow{\mathrm{r}})=<\phi\left(\overrightarrow{\mathrm{r}}^{\prime}\right)\left|\mathrm{v}_{\mathrm{nn}}\left(\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{r}}^{\prime}\right)\right| \phi\left(\overrightarrow{\mathrm{r}}^{\prime}\right)> \\
& \mathrm{V}=\langle\phi(\overrightarrow{\mathrm{r}})| \mathrm{w}(\overrightarrow{\mathrm{r}})|\phi(\overrightarrow{\mathrm{r}})\rangle
\end{aligned}
$$

Fig. 3. (a) Radial wave function $\phi(r)$ of halo neutron, (b) potential $w(r)$ induced by ${ }_{5}$ the other halo neutron and (c) their product, as a function of the distance r.

$$
\mathrm{S}_{1 \mathrm{n}}=\mathrm{S}_{2 \mathrm{n}} / 2-\mathrm{V} / 2>\mathrm{S}_{2 \mathrm{n}} / 2
$$

Halo radius

$$
\begin{gathered}
S_{2 n} \text { vs. } V=\left\langle v_{n n}\right\rangle \\
S_{2 n}+V=-E_{n n}+V=-2 \varepsilon
\end{gathered}
$$

$$
\varepsilon>0 \Leftrightarrow S_{2 n}<-V \Leftrightarrow{ }^{21} C \text { : unbound }
$$

$$
\varepsilon<0 \Leftrightarrow S_{2 \mathrm{n}}>-\mathrm{V} \Leftrightarrow{ }^{21} \mathrm{C} \text { : bound }
$$

Exp.
$\mathrm{S}_{2 \mathrm{n}}: 110 \pm 60 \mathrm{keV}, \quad$ NNDC $\quad{ }^{21} \mathrm{C}$ unbound $\rightarrow \mathrm{S}_{2 \mathrm{n}} \lesssim 0.3 \mathrm{MeV} \rightarrow \mathbf{R M S} \gtrsim 9 \mathrm{fm}$
$0.4,0.7,1.2 \mathrm{MeV}$, Kobayashi et al., PR C86, 054604 (2012)
$0.423 \pm 1.140 \mathrm{MeV}$, Audi et al., NP A729, 337 (2003)
$-0.140 \pm 0.460 \mathrm{MeV}$, Gaudefroy et al., PRL 109, 202503 (2012)
RMS radius: 15.97+3.67/-3.97 fm, ${ }^{22}$ C: Tanaka et al, PRL 104, 062701 (2010)

Correlated core of ${ }^{20} \mathrm{C}$

Occupation number of neutron in $2 \mathrm{~s}_{1 / 2}$ orbit ~ 1
Kobayashi et al., PR C86, 054604 (2013)
Shell-model calc. with YSOX: $1 \mathrm{~d}_{5 / 2}{ }^{6}+1 \mathrm{~d}_{5 / 2}{ }^{4} 2 \mathrm{~s}_{1 / 2}{ }^{2}$
Yuan, suzuki, Otsuka, Xu, Tsunoda, PR C85, 064324 (2012)
Ground state energy of ${ }^{20} \mathrm{C}$ is lowered by admixture of the $1 \mathrm{~d}_{5 / 2}{ }^{4} 2 \mathrm{~s}_{1 / 2}{ }^{2}$ configurations.

Model:

Halo s-orbit is occupied by 2 neutrons
Orthogonality condition between this halo s orbit and the s-orbit of the ${ }^{20} \mathrm{C}$-core state is satisfied, that is, the core s state is made orthogonal to this halo s orbit by Gram-Schmidt method
\rightarrow Blocking effect on the core state
Energy of the ${ }^{20} \mathrm{C}$ core of the ${ }^{22} \mathrm{C}$ ground state is shifted with respect to the energy of the ${ }^{20} \mathrm{C}$ ground state : energy shift $=\Delta>0$
$\mathrm{S}_{2 \mathrm{n}}=-\mathrm{E}_{\mathrm{nn}}-\Delta$

$$
\begin{aligned}
& \left.|\tilde{\mathrm{s}}>=| \mathrm{s}_{1 / 2} \text { (halo) }>=\alpha \mid 2 \mathrm{~s}_{1 / 2} \text { (H.O.) }\right)>+\beta \mid \text { far }-\mathrm{s}> \\
& |\overline{\mathrm{s}}>=| \mathrm{s}_{1 / 2}(\text { core })>=\beta \mid 2 \mathrm{~s}_{1 / 2}(\text { H.O. })>-\alpha \mid \text { far }-\mathrm{s}> \\
& <\overline{\mathrm{s}} \mid \tilde{\mathrm{s}}>=0 \\
& \mathrm{~V}_{\mathrm{WS}} \rightarrow \infty \Rightarrow \beta \rightarrow 0, \alpha \rightarrow 1 \\
& \Rightarrow \text { less } 2 \mathrm{~s}_{1 / 2}-\text { components in } \mid \overline{\mathrm{s}}> \\
& \Rightarrow \text { g.s. energy of }{ }^{20} \mathrm{C} \text { is pushed up: } \Delta>0
\end{aligned}
$$

$\mid s_{1 / 2}$ (core)> gets halo components.
Two-body m.e.'s of $\mathrm{V}_{\mathrm{YsOx}}$ are modified.
Single-particle energy of $2 s_{1 / 2}$ outside ${ }^{4} \mathrm{He}$-core is also modified.

Shell-model calculation:
protons in p-shell, neutrons in sd-shell
\rightarrow g.s. energy of ${ }^{20} \mathrm{C}$
\rightarrow energy shift $\Delta \quad \Delta \sim 1 \mathrm{MeV}$
$\rightarrow \mathrm{S}_{2 \mathrm{n}}=-\mathrm{E}_{\mathrm{nn}}-\Delta$
$\mathrm{S}_{2 \mathrm{n}}$ vs. $\mathrm{V}=\left\langle\mathrm{v}_{\mathrm{nn}}\right\rangle$

$$
\mathrm{S}_{2 \mathrm{n}}+\mathrm{V}=-\mathrm{E}_{\mathrm{nn}}+\mathrm{V}=-2 \varepsilon
$$

Cf. $15.97+3.67 /-3.97 \mathrm{fm},{ }^{22} \mathrm{C}$: Tanaka et al, PRL 104, 062701 (2010)
$\varepsilon>0 \Leftrightarrow \mathrm{~S}_{2 \mathrm{n}}<-\mathrm{V} \Leftrightarrow{ }^{21} \mathrm{C}$: unbound $\mathrm{S}_{2 \mathrm{n}}<0.8 \mathrm{MeV} \quad \alpha^{2} \approx 50-60 \%$
\rightarrow RMS radius of halo $=6 \sim \mathbf{7 m}$ Dependence on $\mathrm{S}_{2 \mathrm{n}}$ is small

The upper bound on the radius of the halo contradicts the hypothesis of Efimov states, which implies the appearance of similar states at different scales near threshold. The ground state of ${ }^{22} \mathrm{C}$ is already close to this upper bound, and there are no excited bound states.
The state of two-neutron halo ${ }^{22} \mathrm{C}$ can be called a single Efimov state for the correlated core.

Energy levels of ${ }^{22} \mathrm{C}$

Summary

-3-body model with low-energy n-n interaction, which reproduces s-wave scattering length and effective range, is shown to be successful to make two valence neutrons bound in drip-line nuclei, ${ }^{24} \mathrm{O}$ and ${ }^{22} \mathrm{C}$.

- $\mathrm{S}_{2 \mathrm{n}}$ and RMS radius of valence neutron in ${ }^{24} \mathrm{O}$ are well reproduced.
- Relation between $\mathrm{S}_{2 \mathrm{n}}$ and RMS radius of halo neutron in ${ }^{22} \mathrm{C}$ are presented for "closed-core" and "correlated-core" models for ${ }^{20} \mathrm{C}$. For the "correlated-core" model, $\mathrm{S}_{2 \mathrm{n}}$ is constrained to be $<0.8 \mathrm{MeV}$ and RMS radius of halo neutron in ${ }^{22} \mathrm{C}$ is obtained to be $6-7 \mathrm{fm}$ for the condition that ${ }^{21} \mathrm{C}$ is unbound.
This suggests non-existence of multiple (excited) Efimov states. cf. Acharya, Ji and Phillips, PL B723, 196 (2013)
- Spectrum of ${ }^{22} \mathrm{C}$ is shown to be sensitive to the models, "closed-" or "correlated-core".

