

12/07/16

Neutron-proton pairing in self-conjugate unstable nuclei through transfer reactions

- np pairing in nuclei
- ► fp shell nuclei & effect of spin orbit
- Experimental set-up
- ▶ ⁵⁶Ni(p,d) : one-nucleon transfer
- ▶ ⁵⁶Ni,⁵⁴Co (p,³He) : preliminary results

M. Assié, <u>B. Le Crom</u>, A. Georgiadou, Y. Blumenfeld IPN Orsay, assie@ipno.in2p3.fr

Generalities about np pairing

- np pairing :
 - isovector -> defined from isospin symmetry
 - isoscalar -> a lot of uncertainties !
- np pairing mostly (only) in N=Z nuclei
- d only bound (J=1+,T=0) A=2 nuclei T=0 pairing stronger than T=1 ?
- Correlated state // pair phase of superfluid for T=0? --> collective modes ?

Probing isoscalar pairing through transfer reactions

Deuteron-transfer intensities (IBM model)

Reaction	$C_{T=0}^2$	$C_{T=1}^{2}$
$EE \rightarrow OO_{T=0}$	3	0
$EE \rightarrow OO_{T=1}$	0	$N_{\rm b} + 3$
$OO_{T=1} \rightarrow EE$	0	$N_{\rm b} + 1$

P. van Isäcker, PRL (2005)

Experimental status

- ► sd shell systematic
 - (remeasured see Y. Ayyad-Limonge)
- One measurement in fp shell : ⁴⁴Ti A.O. Macchiavelli to be published

- Transfer is proportionnal to the number of pairs
- σ (0+)/ σ (1+)= gives the relative strength of T=0/T=1 pairing

DREB 2016 - M. Assié - np pairing

Shell effects on np pairing

Binding Energies

- ♦ isoscalar pairing affected by shell effects
- spin-orbit effect on np pairing particularly in fp shell)

Theoretical predictions

		T=1	1 T=0 overlap	
		$\langle QM iv \rangle$	$\langle QM is angle$	$\langle iv is angle$
sd shell	$^{20}\mathrm{Ne}$	0.884	0.953	0.843
	$^{24}{ m Mg}$	0.650	0.911	0.336
	$^{28}\mathrm{Si}$	0.590	0.911	0.343
	^{32}S	0.638	0.973	0.595
fp shell	$^{44}\mathrm{Ti}$	0.901	0.678	0.303
	$^{48}\mathrm{Cr}$	0.906	0.497	0.221
	52 Fe	0.927	0.753	0.746
	$^{104}\mathrm{Te}$	0.978	0.489	0.314
	¹⁰⁸ Xe	0.958	0.354	0.234
	112 Ba	0.939	0.375	0.376

Quartet model : Sambatoro, Sandulescu PRC (2015) Shell model : Gezerlis et al, PRL (2011)

▶ Further measurements in fp shell : ⁵⁶Ni, ⁵²Fe

Experimental set-up

⁵⁶Ni(p,d) reaction as calibration

do/dΩ (mb/sr)

⁵⁶Ni(p,d)⁵⁷Ni for calibration

- + already measured (Sanetullaev et al, PLB 2014)
- ✦ energy calibration of MUST2
- ✦ alignement of CATS-MUST2
- resolution = 846 keV (FWHM) as expected from simulations

12/07/16

DREB 2016 - M. Assié - np pairing

Excitation energy spectra

12/07/16

DREB 2016 - M. Assié - np pairing

Excitation energy spectra

Results for ⁵²Fe and ⁵⁶Ni

- Particle-gamma coincidences very powerful
- ► T=0 states sparsely populated
- Parabola behaviour
- ⁵⁶Ni is less single-particle than expected
- T=0 pairing seems weaker in fp shell than sd shell

Perspectives :

- ► ${}^{56}Ni(d,\alpha){}^{54}Co$: complementary reaction with selectivity in isospin
- angular distribution

Thank you for your attention

- IPNO: <u>B. Le Crom</u>, M. Assié, Y. Blumenfeld, J.A Scarpaci, D. Beaumel, M-C Delattre, S. Franchoo, J. Guillot, A. Georgiadou, F. Hammache, P. Morfouace, I. Stefan, D. Suzuki, G. Verde
- GANIL : G. de France, E. Clément, T. Roger, O. Kamalou, L. Perrot, J. Pancin, O. Sorlin, J-C Thomas, M. Vandebrouck
- LPC Caen : L. Achouri, M. Aouadi, F. Delaunay, Q. Deshayes, J. Gibelin, S. Leblond, N. Orr, X. Perreira, M. Marguès
- CEA/Saclay : A. Corsi, A. Gillibert, V. Lapoux, E.C. Pollacco, M. de Sénoville

University of Santiago de Conpostela : B. Ferandez-Dominguez, M. Camano, D. Ramos
University of Surrey : W. Catford, A. Matta, A. Knapton
University of Camerino : D. Mengoni
University of lusbon : A. Benitez-Sanchez
INFN-LNS : M. Fisichella
Horia Hulubei National Institute of Physics : F. Rotaru, M. Stanoiu, R. Borcea