- ∢ ≣ ▶

Direct reactions with weakly-bound systems: a one-dimensional model

Laura Moschini

Andrea Vitturi and Antonio Moro

Introduction	The Model	Results	Conclusions

Outline

Introduction

The Model

Results

Conclusions

イロン イヨン イヨン イヨン

ъ

Introduction

Introduction initial $\Psi(\vec{r}, t_i)$ time evolution final $\Psi(\vec{r}, t_f)$ B4 184 $\Psi(\vec{r}, t) = \sum_{j=1}^{N} c_j(t) \Phi_j(\vec{r}) e^{iE_jt/\hbar}$ more complexities for weakly-bound systems! Λ huge basis -> truncations Λ continuum discretization 50 B,=0	
$\Psi(\vec{r},t) = \sum_{j=1}^{N} c_j(t) \Phi_j(\vec{r}) e^{iE_jt/\hbar}$ more complexities for weakly-bound systems! $\Psi(\vec{r},t) = \sum_{j=1}^{N} c_j(t) \Phi_j(\vec{r}) e^{iE_jt/\hbar}$ more complexities for weakly-bound systems! Φ huge basis -> truncations Φ continuum discretization Φ and Φ and Φ and Φ and Φ are complexities for weakly-bound systems! Φ and Φ are complexities for weakly-bound systems! Φ and Φ are complexities for weakly-bound systems! Φ are complexities for weakly-bound systems! Φ and Φ are complexities for weakly-bound systems! Φ are complexities for more complexities for mor	
$\Psi(\vec{r},t) = \sum_{j=1}^{N} c_j(t) \Phi_j(\vec{r}) e^{iE_j t/\hbar}$ more complexities for weakly-bound systems! Λ huge basis -> truncations Λ continuum discretization 50 $B_n=0$	E
50B_=0	
28 82	
20 8 2 2 2 8 2 2 2 8 	

Direct reactions with weakly-bound systems: a one-dimensional model

Introduction

Introduction	I he Model	Results	Conclusions
Introduc	ction		
1	initial $\Psi(\vec{r}, t_i)$ \longrightarrow time 82	evolution final $\Psi(\vec{r}, \vec{r})$ wavefunction	t _f) 184 Br=4MeV
$\Psi(\vec{r},t) =$	$\sum_{j=1}^{N} c_j(t) \Phi_j(\vec{r}) e^{iE_j t/\hbar}$ more complex weakly-bound	ities for 🔥 huge bas systems! 🔥 continuu	sis -> truncations Im discretization
	50 How to simplify	the problem?	
	Let's move to or	ne dimension!	
	$\Psi(x,t) = \sum_{i=1}^{N} c_i$	$(t)\Phi_i(x)e^{iE_jt/\hbar}$	
28 —	we can follow both	time evolutions	
20	using time dependent or co	upled-channels meth	ods.
	understand the limitatio	ns of approximations	
2 2	and in particular study th	ne role of continuur	n
2 8			
			토▶ ▲ 토 ▶ 토 비 · 이 ۹.(~

Introduction	The Model	Results	Conclusions

Outline

Introduction

The Model

Results

Conclusions

イロト イヨト イヨト イヨト

Esbensen H, Broglia RA and Winther A 1983 Ann. Phys. 146 149-173

Initial wavefunction

obtained by solving the time independent Schroedinger equation

LM, Pérez-Bernal and Vitturi, J. Phys. G: Nucl. Part. Phys. 43 045112 (2016)

$$\left[-\frac{\hbar^2}{2\mu}\frac{d^2}{dx^2} + V_j(x)\right]\Phi_n^{(j)}(x) = E_n^{(j)}\Phi_n^{(j)}(x)$$

= nar

Introduction	The Model	Results	Conclusions

By definition we can expand the wavefunction $\Psi(x,t)$ as a combination of target and projectile basis states depending on a set of coefficients $c_i(t)$

$$\Psi(x,t) = \sum_{j=1}^{N_T} c_j^T(t) \Phi_j^T(x) e^{iE_j^T t/\hbar} + \sum_{j=1}^{N_P} c_j^P(t) \Phi_j^P(x) e^{iE_j^P t/\hbar}$$

We can follow the time evolution of:

 $\Psi(x,t)
ightarrow$ exact model $c_j(t)
ightarrow$ coupled-channels formalism

= 990

Exact model

Solution of time dependent Schroedinger equation

Vitturi and LM, J. Phys.: Conf. Ser. **590**, 012007 (2015) Vitturi, LM, Hagino and Moro, AIP Conf. Proc. **1681**, 060001 (2015)

$$i\hbar rac{d}{dt}\Psi(x,t) = \mathcal{H}(x,t)\Psi(x,t)$$
 $\Psi(x,t+\Delta t) = \left(1+rac{i\Delta t}{2\hbar}\mathcal{H}
ight)^{-1}\left(1-rac{i\Delta t}{2\hbar}\mathcal{H}
ight)\Psi(x,t)$
Bonche, Koonin and Negele, Phys. Rev. C 13, 1226 (1976)

Exact model

Solution of time dependent Schroedinger equation

Vitturi and LM, J. Phys.: Conf. Ser. 590, 012007 (2015) Vitturi, LM, Hagino and Moro, AIP Conf. Proc. 1681, 060001 (2015)

$$i\hbar rac{d}{dt}\Psi(x,t) = \mathcal{H}(x,t)\Psi(x,t)$$
 $\Psi(x,t+\Delta t) = \left(1 + rac{i\Delta t}{2\hbar}\mathcal{H}
ight)^{-1}\left(1 - rac{i\Delta t}{2\hbar}\mathcal{H}
ight)\Psi(x,t)$
Bonche, Koonin and Negele, Phys. Rev. C 13, 1226 (1976)

- distance of closest approach
- incident energy
- Q-value

Exact model

Solution of time dependent Schroedinger equation

Vitturi and LM, J. Phys.: Conf. Ser. **590**, 012007 (2015) Vitturi, LM, Hagino and Moro, AIP Conf. Proc. **1681**, 060001 (2015)

$$i\hbar \frac{d}{dt}\Psi(x,t) = \mathcal{H}(x,t)\Psi(x,t)$$
 $\Psi(x,t+\Delta t) = \left(1 + \frac{i\Delta t}{2\hbar}\mathcal{H}\right)^{-1} \left(1 - \frac{i\Delta t}{2\hbar}\mathcal{H}\right)\Psi(x,t)$
Rouche Koopin and Negele Phys. Rev. C13 1226(1976)

- distance of closest approach
- incident energy
- Q-value

Exact model

Solution of time dependent Schroedinger equation

Vitturi and LM, J. Phys.: Conf. Ser. **590**, 012007 (2015) Vitturi, LM, Hagino and Moro, AIP Conf. Proc. **1681**, 060001 (2015)

$$i\hbar \frac{d}{dt}\Psi(x,t) = \mathcal{H}(x,t)\Psi(x,t)$$
 $\Psi(x,t+\Delta t) = \left(1 + \frac{i\Delta t}{2\hbar}\mathcal{H}\right)^{-1} \left(1 - \frac{i\Delta t}{2\hbar}\mathcal{H}\right)\Psi(x,t)$
Rouche Koopin and Negele Phys. Rev. C13 1226(1976)

- distance of closest approach
- incident energy
- Q-value

Exact model

Solution of time dependent Schroedinger equation

Vitturi and LM, J. Phys.: Conf. Ser. **590**, 012007 (2015) Vitturi, LM, Hagino and Moro, AIP Conf. Proc. **1681**, 060001 (2015)

$$i\hbar \frac{d}{dt}\Psi(x,t) = \mathcal{H}(x,t)\Psi(x,t)$$
 $\Psi(x,t+\Delta t) = \left(1 + \frac{i\Delta t}{2\hbar}\mathcal{H}\right)^{-1} \left(1 - \frac{i\Delta t}{2\hbar}\mathcal{H}\right)\Psi(x,t)$
Rouche Koopin and Negele Phys. Rev. C13 1226(1976)

- distance of closest approach
- incident energy
- Q-value

Exact model

Solution of time dependent Schroedinger equation

Vitturi and LM, J. Phys.: Conf. Ser. **590**, 012007 (2015) Vitturi, LM, Hagino and Moro, AIP Conf. Proc. **1681**, 060001 (2015)

$$i\hbar \frac{d}{dt}\Psi(x,t) = \mathcal{H}(x,t)\Psi(x,t)$$
 $\Psi(x,t+\Delta t) = \left(1 + \frac{i\Delta t}{2\hbar}\mathcal{H}\right)^{-1} \left(1 - \frac{i\Delta t}{2\hbar}\mathcal{H}\right)\Psi(x,t)$
Rouche Koopin and Negele Phys. Rev. C13 1226(1976)

- distance of closest approach
- incident energy
- Q-value

Exact model

Solution of time dependent Schroedinger equation

Vitturi and LM, J. Phys.: Conf. Ser. **590**, 012007 (2015) Vitturi, LM, Hagino and Moro, AIP Conf. Proc. **1681**, 060001 (2015)

$$i\hbar \frac{d}{dt}\Psi(x,t) = \mathcal{H}(x,t)\Psi(x,t)$$
 $\Psi(x,t+\Delta t) = \left(1 + \frac{i\Delta t}{2\hbar}\mathcal{H}\right)^{-1} \left(1 - \frac{i\Delta t}{2\hbar}\mathcal{H}\right)\Psi(x,t)$
Renche Koopin and Negele Phys. Rev. C13 1226(1976)

- distance of closest approach
- incident energy
- Q-value

Exact model

Solution of time dependent Schroedinger equation

Vitturi and LM, J. Phys.: Conf. Ser. **590**, 012007 (2015) Vitturi, LM, Hagino and Moro, AIP Conf. Proc. **1681**, 060001 (2015)

$$i\hbar \frac{d}{dt}\Psi(x,t) = \mathcal{H}(x,t)\Psi(x,t)$$
 $\Psi(x,t+\Delta t) = \left(1 + \frac{i\Delta t}{2\hbar}\mathcal{H}\right)^{-1} \left(1 - \frac{i\Delta t}{2\hbar}\mathcal{H}\right)\Psi(x,t)$
Bonche, Koonin and Nezele, Phys. Rev. C 13, 1226 (1976)

- distance of closest approach
- incident energy
- Q-value

Exact model

Solution of time dependent Schroedinger equation

Vitturi and LM, J. Phys.: Conf. Ser. **590**, 012007 (2015) Vitturi, LM, Hagino and Moro, AIP Conf. Proc. **1681**, 060001 (2015)

$$i\hbar \frac{d}{dt}\Psi(x,t) = \mathcal{H}(x,t)\Psi(x,t)$$
 $\Psi(x,t+\Delta t) = \left(1 + \frac{i\Delta t}{2\hbar}\mathcal{H}\right)^{-1}\left(1 - \frac{i\Delta t}{2\hbar}\mathcal{H}\right)\Psi(x,t)$
Bonche, Koonin and Negele, Phys. Rev. C 13, 1226 (1976)

- distance of closest approach
- incident energy
- Q-value

Exact model

Solution of time dependent Schroedinger equation

Vitturi and LM, J. Phys.: Conf. Ser. **590**, 012007 (2015) Vitturi, LM, Hagino and Moro, AIP Conf. Proc. **1681**, 060001 (2015)

$$i\hbar \frac{d}{dt}\Psi(x,t) = \mathcal{H}(x,t)\Psi(x,t)$$
 $\Psi(x,t+\Delta t) = \left(1 + \frac{i\Delta t}{2\hbar}\mathcal{H}\right)^{-1} \left(1 - \frac{i\Delta t}{2\hbar}\mathcal{H}\right)\Psi(x,t)$
Bonche, Koonin and Nezele, Phys. Rev. C 13, 1226 (1976)

- distance of closest approach
- incident energy
- Q-value

Exact model

Solution of time dependent Schroedinger equation

Vitturi and LM, J. Phys.: Conf. Ser. **590**, 012007 (2015) Vitturi, LM, Hagino and Moro, AIP Conf. Proc. **1681**, 060001 (2015)

$$i\hbar \frac{d}{dt}\Psi(x,t) = \mathcal{H}(x,t)\Psi(x,t)$$
 $\Psi(x,t+\Delta t) = \left(1 + \frac{i\Delta t}{2\hbar}\mathcal{H}\right)^{-1} \left(1 - \frac{i\Delta t}{2\hbar}\mathcal{H}\right)\Psi(x,t)$
Bonche, Koonin and Nezele, Phys. Rev. C 13, 1226 (1976)

- distance of closest approach
- incident energy
- Q-value

Exact model

Solution of time dependent Schroedinger equation

Vitturi and LM, J. Phys.: Conf. Ser. **590**, 012007 (2015) Vitturi, LM, Hagino and Moro, AIP Conf. Proc. **1681**, 060001 (2015)

$$i\hbar \frac{d}{dt}\Psi(x,t) = \mathcal{H}(x,t)\Psi(x,t)$$
 $\Psi(x,t+\Delta t) = \left(1 + \frac{i\Delta t}{2\hbar}\mathcal{H}\right)^{-1}\left(1 - \frac{i\Delta t}{2\hbar}\mathcal{H}\right)\Psi(x,t)$
Bonche, Koonin and Negele, Phys. Rev. C 13, 1226 (1976)

- distance of closest approach
- incident energy
- Q-value

Exact model

Solution of time dependent Schroedinger equation

Vitturi and LM, J. Phys.: Conf. Ser. **590**, 012007 (2015) Vitturi, LM, Hagino and Moro, AIP Conf. Proc. **1681**, 060001 (2015)

$$i\hbar \frac{d}{dt}\Psi(x,t) = \mathcal{H}(x,t)\Psi(x,t)$$
 $\Psi(x,t+\Delta t) = \left(1 + \frac{i\Delta t}{2\hbar}\mathcal{H}\right)^{-1} \left(1 - \frac{i\Delta t}{2\hbar}\mathcal{H}\right)\Psi(x,t)$
Bonche, Koonin and Nezele, Phys. Rev. C 13, 1226 (1976)

- distance of closest approach
- incident energy
- Q-value

Exact model

Solution of time dependent Schroedinger equation

Vitturi and LM, J. Phys.: Conf. Ser. 590, 012007 (2015) Vitturi, LM, Hagino and Moro, AIP Conf. Proc. 1681, 060001 (2015)

$$i\hbar rac{d}{dt}\Psi(x,t) = \mathcal{H}(x,t)\Psi(x,t)$$
 $\Psi(x,t+\Delta t) = \left(1 + rac{i\Delta t}{2\hbar}\mathcal{H}
ight)^{-1}\left(1 - rac{i\Delta t}{2\hbar}\mathcal{H}
ight)\Psi(x,t)$
Bonche, Koonin and Negele, Phys. Rev. C 13, 1226 (1976)

Final probabilities

$$P_{inelastic} = |\langle \Psi(x, t_{fin}) | \Phi(x)_{target} \rangle |^2$$

$$P_{transfer} = |\langle \Psi(x, t_{fin}) | \Phi(x)_{proj} \rangle|^2$$

$$P_{break-up} = 1 - P_{inelastic} - P_{transfer} = |\int \langle \Psi(x, t_{fin}) | \Phi(k) \rangle dk |^2$$

overlap with continuum (pseudostates, exact continuum ...)

E = nan

Coupled-Channels

E

Initial condition: $c_j^P(t=-\infty)=0$ and $c_j^T(t=-\infty)=\delta_{i,j}$

$$\begin{split} i\hbar\frac{\partial c_j^i}{\partial t} &= \sum c_k^T \langle \omega_j^T | V^P | \Psi_k^T \rangle + \sum c_k^P \langle \omega_j^T | V^T | \Psi_k^P \rangle \\ i\hbar\frac{\partial c_j^P}{\partial t} &= \sum c_k^T \langle \omega_j^P | V^P | \Psi_k^T \rangle + \sum c_k^P \langle \omega_j^P | V^T | \Psi_k^P \rangle \\ \end{split}$$
sbensen H. Broglia RA and Winther A 1983 *Ann. Phys.* **146** 149–173

- inclusion of target Ψ^T AND projectile Ψ^P bases
- ► dual bases: time-dependent functions associated with the two wells (ω^T and ω^P) based on overlaps between target and projectile states to solve non-orthogonal problem $\langle \Psi^I_m | \omega^J_n \rangle = \delta_{I,J} \delta_{n,m}$

Coupled-Channels

Initial condition: $c_j^P(t=-\infty)=0$ and $c_j^T(t=-\infty)=\delta_{i,j}$

$$\begin{split} i\hbar\frac{\partial c_j^i}{\partial t} &= \sum c_k^T \langle \omega_j^T | V^P | \Psi_k^T \rangle + \sum c_k^P \langle \omega_j^T | V^T | \Psi_k^P \rangle \\ i\hbar\frac{\partial c_j^P}{\partial t} &= \sum c_k^T \langle \omega_j^P | V^P | \Psi_k^T \rangle + \sum c_k^P \langle \omega_j^P | V^T | \Psi_k^P \rangle \\ \end{split} \\ \end{split} \\ \end{split} \\ \begin{split} \mathsf{Esbensen \ H, \ Broglia \ RA \ and \ Winther \ A \ 1983 \ Ann. \ Phys. \ \mathbf{146} \ \mathbf{149-175} \end{split}$$

New feature: continuum included!!! pseudostates obtained by diagonalizing the potential in different bases (infinite square well, harmonic oscillator, transformed HO)

Coupled-Channels

T T

Initial condition: $c_j^P(t=-\infty)=0$ and $c_j^T(t=-\infty)=\delta_{i,j}$

$$\begin{split} i\hbar \frac{\partial c_j^i}{\partial t} &= \sum c_k^T \langle \omega_j^T | V^P | \Psi_k^T \rangle + \sum c_k^P \langle \omega_j^T | V^T | \Psi_k^P \rangle \\ i\hbar \frac{\partial c_j^P}{\partial t} &= \sum c_k^T \langle \omega_j^P | V^P | \Psi_k^T \rangle + \sum c_k^P \langle \omega_j^P | V^T | \Psi_k^P \rangle \end{split}$$

Esbensen H, Broglia RA and Winther A 1983 Ann. Phys. 146 149-173

Final probabilities

$$P_j^{(T,P)}(t_f) = |c_j^{(T,P)}(t_f)|^2$$

non-orthogonal basis states => tot probability is not conserved during collision

To be calculated after the collision when overlaps are zero

Introduction	The Model	Results	Conclusions

Outline

Introduction

The Model

Results

Conclusions

イロト イヨト イヨト イヨト

Introduction	The Model	Results	Conclusions

Results Initial conditions and time evolution

Evolution of exact wavefunction

Introduction	The Model	Results	Conclusions

Initial conditions and time evolution

Evolution of exact wavefunction

Introduction	The Model	Results	Conclusions

Initial conditions and time evolution

Evolution of exact wavefunction

Introduction	The Model	Results	Conclusions

Initial conditions and time evolution

Evolution of exact wavefunction

Introduction	The Model	Results	Conclusions

Initial conditions and time evolution

Evolution of exact wavefunction

Introduction	The Model	Results	Conclusions

Initial conditions and time evolution

Evolution of exact wavefunction

Introduction	The Model	Results	Conclusions

Initial conditions and time evolution

Evolution of exact wavefunction

Results Final probability

Final exact wavefunction

	Exact	First approx	CC (a)	CC (b)	CC (c)
elastic	21%	-	21.4%	95%	21%
transfer	5%	100%	-	5%	0.04%
breakup	74%	150%	78.6%	-	79%
Exact:	exact t	ime evolution	results		
First a	pprox:	probability to	excite dir	ectly	
		the system fro	m initial	to final	state
CC (a)	: only t	arget basis,			
	includ	ing continuum	pseudos	tates	
CC (b)	: target	t AND projectil	e bases, i	no conti	nuum
CC (c)	: target	AND projectile	e bases,		
	includ	ling target's co	ntinuum	pseudo	states

・ロト ・回ト ・ヨト ・ヨト

11 DQC

Introduction	The Model	Results	Conclusions

Results Breakup probability

$$|\langle \Psi(x,t_f)|\Phi_{T,P}(x,E)\rangle|^2$$

final wavefunction Projectile
or target eigenfunction
for positive energy E

1.00	+ ~~	. .	· ot	00
	LIL	л	н.е.	юп

- 4 回 2 - 4 □ 2 - 4 □

-

Results Breakup probability

1.001	- a.,	<u>a</u> d		 0.00
			ш.	 UH I

<ロ> <同> <同> <同> < 同> < 同>

Results Breakup probability

Conclusions

laura.moschini@pd.infn.it

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Breakdown of the CDCC ansatz: d+ $^{10}\text{Be} \rightarrow p + n + \,^{10}\text{Be}$

But...differences have been evidenced for breakup at small incident energies (N.J. Upadhyay, A. Deltuva, F.M. Nunes, PRC85, 054621 (2012))

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへの

CDCC can be (and must be!) improved

Well-bound system

11 DQC

Two-neutron system

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Two-neutron system

= 200

Two-neutron system

Virtual state

= 200