

Recent structure studies with proton-induced reactions

A. Obertelli, CEA Saclay

Direct Reactions with Exotic Beams Conference

July 11th-16th, 2016, Halifax, Canada

1- In-beam gamma spectroscopy at the RIBF with DALI2 and MINOS

- $> {}^{66}Cr, {}^{70,72}Fe$ (published in 2015)
- ➢ ⁷⁸Ni (unpublished, in preparation)
- > ^{88,90,92,94}Se (unpublished, recently submitted)
- 2- Collectivity of neutron-deficient Sn isotopes: ¹⁰⁴Sn(p,p')
- 3- Status of the CHYMENE solid hydrogen target

Cera Exploring nuclear structure far from stability

Cea MINOS at the RIBF

DALI2: S. Takeuchi et al., Nucl. Instr. Meth. A **763**, 596 (2014) MINOS: A. Obertelli *et al.*, Eur. Phys. Jour. A **50**, 8 (2014)

CEA MINOS at the RIBF

Features

- Ar(85%)CF4(12%)iso(3%) gas drift velocity: 4.5 cm/μs dispersion: 200 μm × √cm
- AGET: digital, 512 time bin, 100 MHz individual discriminator / channel typical dead time of 100 μs / event

AGET chip from the GET project (CEA, IN2P3, NSCL collaboration)

SEASTAR Shell Evolution and Search for 2⁺ Energies At the RIBF

Spokespersons: P. Doornenbal (RIKEN), AO (CEA)

http://www.nishina.riken.jp/collaboration/SUNFLOWER/experiment/seastar/index.html

SEASTAR Shell Evolution and Search for 2⁺ Energies At the RIBF

Spokespersons: P. Doornenbal (RIKEN), AO (CEA)

Primary beam ²³⁸U at 345 MeV/nucleon, **mean intensity = 13 pnA** Secondary beams at 250 MeV/nucleon, **100-mm target**, $\Delta\beta/\beta$ = 20% **DE LA RECHERCHE À L'INDUSTRI**

DALI2-MINOS setup

Certa Collectivity beyond N=40 in Cr, Fe isotopes

Analysis by C. Santamaria (CEA) and C. Louchart (TU Darmstadt)

Second island of inversion

Fe isotopes

38 40 42 44 **Neutron number**

46

C. Santamaria et al., Phys. Rev. Lett. 115, 192501 (2015).

(non) magic character of N=50 at (below) ⁷⁸Ni

Similarity to the merging of the N=20 island of inversion and N=28 region of deformation P. Doornenbal *et al.*, Phys. Rev. Lett. 111, 212502 (2013)

Recent predictions for the spectroscopy of ⁷⁸Ni

Large Scale Shell model calculations by Tsunoda, Otsuka (University of Tokyo), private comm.:

- full pfg₉d₅ valence space
- intruder configuration at high excitation energy

First spectroscopy of ⁷⁸Ni

Analysis by R. Taniuchi (University of Tokyo)

Ongoing collaboration with Ogata, Otsuka, Tsunoda, Schwenck et al. for interpretation

DE LA RECHERCHE À L'INDUSTRI

23 SEASTAR second campaign

Primary beam ²³⁸U at 345 MeV/nucleon, **mean intensity = 30 pnA!** Secondary beams at 250 MeV/nucleon, 100-mm target, $\Delta\beta/\beta$ = 30%

Cera Collectivity in neutron-deficient Sn isotopes

Experimental B(E2) deviate from predictions (SM, seniority scheme)

A. Banu, *et al.*, Phys. Rev. C 72, 061305 (2005).
J. Cederkall, *et al.*, Phys. Rev. Lett. 98, 172501 (2007).
P.Doornenbal *et al.*, Phys. Rev. C 78, 031303 (2008).

A. Ekstrom, *et al.*, Phys. Rev. Lett. 101, 012502 (2008).
C. Vaman, *et al.*, Phys. Rev. Lett. 99, 162501 (2007).
R.Kumar *et al.*, Phys Rev. C 81, 024306 (2010).

What is the origin of light Sn collectivity?

Cea Neutron contribution from QRPA – Gogny D1M

HFB+QRPA with Gogny D1M interaction, no model space limitation M.Martini, S.Péru and M.Dupuis, Phys. Rev. C 83, 034309 (2011).

M_p shows a maximum at N=60 as in Ansari and Ring, PRC 74, 054313 (2006).
 > neutron contribution dominant

Cera Proton inelastic scattering ¹⁰⁴Sn(p,p')

- 150 MeV/nucleon, RIBF
- inclusive gamma spectroscopy
- DALI2
- C + CH₂ targets
- ¹⁰⁴Sn and ¹¹²Sn (benchmark)

Cea Proton inelastic scattering ¹⁰⁴Sn(p,p')

¹¹² Sn on H			
J ^π	E _{ex} (keV)	σ_{exp} (mb)	σ_{th} (mb)
2+	1245	9.1(38)	6.5(13)
0^{+}_{2}	2175	4.0(24)	< 0.1
4 ⁺	2230	3.6(26)	1.8(4)
31	2335	4.6(20)	3.6(7)
¹⁰⁴ Sn on H			
Jπ	E_{ex} (keV)	σ_{exp} (mb)	σ_{th} (mb)
2 ⁺	1260	5.4(24)	3.2(6)
4 ⁺ ₁	1930	$4.2(8)(^{0}_{-10})$	0.7(1)
(2 ⁺ ₂)	2300	1.8(9)	0.3(1)
(3^{-}_{1})	3210	$3.8(14)(^{+10}_{0})$	3.0(6)

- predictions and experimental (p,p') cross section consistent
- ➢ no noticeable gap variations at Z=50 or N=50 predicted by Gogny D1M
- indication for isoscalar character of excitations predicted by QRPA

DE LA RECHERCHE À L'INDUSTR

Ce CHYMENE: hydrogen target for low-energy RI studies

Motivations

Thin target for high resolution measurements Pure target for + statistics and - background

Objective

Solid H₂ or D₂ target from 20 to 200 μ m 50 μ m H2 = 350 μ g.cm⁻² Windowless

Method

Extruded solid hydrogen

Present status

- > Stable operation down to 50 μ m (Ø 5 mm)
- Thickness homogeneity of 10-20%
- Continuous production > 48 hours
- ➤ 5.10⁻⁴ mbar
- Alpha source measurements
- A. Gillibert *et al.*, EPJA **49** (2013).

March 2015

DE LA RECHERCHE À L'INDUSTRIE

Cea CHYMENE: hydrogen target for low-energy RI studies

Physics collaborations

N. Alamanos, G. de Angelis, N. Aoi, H. Baba, C. Barbieri, C. Bertulani, A. Corsi, F. Delaunay, Z. Dombradi, P. Doornenbal, T. Duguet, S. Franchoo, J. Gibelin, A. Gillibert, S. Go, M. Gorska, A. Gottardo, S. Grévy, J.D. Holt, E. Ideguchi, T. Isobe, A. Jungclaus, N. Kobayashi, T. Kobayashi, Y. Kondo, W. Korten, Y. Kubota, I. Kuti, V. Lapoux, S. Leblond, J. Lee, S. Lenzi, H. Liu, G. Lorusso, C. Louchart, R. Lozeva, F.M. Marques, I. Matea, K. Matsui, Y. Matsuda, M. Matsushita, J. Menendez, D. Mengoni, S. Michimasa, T. Miyazaki, S. Momiyama, P. Morfouace, T. Motobayashi, T. Nakamura, D. Napoli, F. Naqvi, M. Niikura, A. Obertelli, N. Orr, S. Ota, H. Otsu, T. Otsuka, N. Pietralla, Z. Podolyak, E.C. Pollacco, G. Potel, G. Randisi, F. Recchia, E. Sahin, H. Sakurai, C. Santamaria, M. Sasano, A. Schwenk, Y. Shiga, Y. Shimuzu, S. Shimoura, J. Simonis, P.A. Soderstrom, S. Sohler, V. Soma, I. Stefan, D. Steppenbeck, T. Sumikama, H. Suzuki, M. Tanaka, R. Taniuchi, K.N. Tuan, T. Uesaka, J. Valiente Dobon, Zs. Vajta, D. Verney, H. Wang, V. Werner, K. Wimmer, Zh. Xu, R. Yokoyama, K. Yoneda

Development and local teams

S. Anvar, L. Audirac, G. Authelet, H. Baba, B. Bruyneel, D. Calvet, F. Chateau, A. Corsi, A. Delbart, P. Doornenbal, A. Gillibert, J.-M. Gheller, A. Giganon, T. Isobe, Y. Kubota, C. Lahonde-Hamdoun, V. Lapoux, D. Leboeuf, D. Loiseau, M. Matsushita, A. Mohamed, J.-Ph. Mols, T. Motobayashi, M. Nishimura, S. Ota, H. Otsu, C. Péron, A. Peyaud, E.C. Pollacco, G. Prono, J.-Y. Rousse, H. Sakurai, C. Santamaria, M. Sasano, R. Taniuchi, S. Takeuchi, T. Uesaka, Y. Yanagisawa, K. Yoneda and the BigRIPS team

Ineory C.Bertulani, M. Dupuis, F. Nowacki, K. Ogata, T. Otsuka, S. Péru, A. Poves, T. Rodriguez-Gusman, A. Schwenck, Y. Tsunoda

Special thanks to

S. Chen, A. Corsi, P. Doornenbal, A. Gillibert, C. Santamaria, R. Taniuchi for their work and material

- A unique physics program based on (p,2p) and (p,pn) reactions at the RIBF with DALI2 and MINOS is ongoing
- Shell evolution and search for 2⁺ states in neutron rich nuclei (SEASTAR) Two campaigns performed in May 2014 and May 2015 ⁶⁶Cr, ^{70,72}Fe, ⁷⁸Ni,⁷⁹Cu, ^{82,84}Zn, ⁸⁸Ge, ^{88,90,92,94}Se, ^{98,100}Kr, ¹⁰⁰Sr, ¹¹⁰Zr, ¹¹²Mo (shown, to be shown)
- Analysis / interpretation of cross sections under way recent theory developments
- Systematics of more than 40 (*p*,2*p*), (*p*,*pn*) and (*p*,3*p*) cross sections on the way
- Exciting perspectives expected in 2017: ⁵²Ar, ⁵⁶Ca, ⁶²Ti
- Light Tin isotopes investigated via inclusive proton inelastic scattering QRPA calculations, consistent with data, suggest isoscalar excitations
- CHyMENE: new windowless hydrogen thin (50 μm) target operational since 2016 R&D still ongoing for thinner targets and better homogeneity