

Charge-changing cross section measurement of neutron-rich carbon isotopes at 50A MeV and determination of their proton distribution root-mean-square radii by using Glauber model.

Tran Dinh Trong

Research Center for Nuclear Physics, Osaka University. Institute of Physics, VAST, Vietnam.

- Nuclear radii is one of the most important gloss property of nuclei.
- Proton and neutron distributions radii are good observables for testing nuclear structure model.
- The proton distribution radius together with matter radius are important in extracting the neutron skin thickness:

$$\Delta S_n = \left\langle R_n^2 \right\rangle^{\frac{1}{2}} - \left\langle R_p^2 \right\rangle^{\frac{1}{2}}, \qquad N \left\langle R_n^2 \right\rangle = A \left\langle R_m^2 \right\rangle - Z \left\langle R_p^2 \right\rangle$$

The AMD calculation predicted that proton densities (radii) of C isotopes are almost constant. We want to experimentally confirm this using CCCS measurement.

Y. Kanada-En'yo, PRC71(2005),014310

Nuclear Radii and Cross Section

- There is no model-independent method for determining the matter-density distribution of an unstable nucleus.
- For proton rms radii, electron scattering is only applicable for stable nuclei, isotope shift is challenging for p,p-sd shell nuclei.

Geometrical model:
$$\sigma_R(P,T) = \pi (R_T + R_P)^2$$

Glauber model:

✓ It works very well for interaction or reaction cross section from 30A to 1000A MeV $\langle R^2 \rangle = \frac{\int r^2 [\rho_p(\mathbf{r}) + \rho_n(\mathbf{r})] d\mathbf{r}}{\int [\rho_p(\mathbf{r}) + \rho_n(\mathbf{r})] d\mathbf{r}}$

Charge-Changing Cross Section σ_{cc} is the cross section for all (direct) processes which result in a change of the atomic number(Z) of the projectile

 $\sigma_{cc} = \int [1 - T_c(b)] d\mathbf{b}$ $T_c(\mathbf{b}) = \exp[-\sigma_{pp} \int \rho_{Pp}(\mathbf{r} - \mathbf{b}) \cdot \rho_{Tp}(\mathbf{r}) d\mathbf{r} - \sigma_{pn} \int \rho_{Pp}(\mathbf{r} - \mathbf{b}) \cdot \rho_{Tn}(\mathbf{r}) d\mathbf{r}]$

 Tested by stable nuclei and Li isotopes at 900A MeV.

How about at energy around 50A MeV?

I. Tanihata et al, Prog.Part.Nucl.Phys. 68 (2013),215

Tran Dinh Trong

7/13/16

Experiment setup

RCNP

CCCSs of C isotopes increase slowly with neutron number for ¹²⁻¹⁸C.

Glauber model calculation

5 Formalism

$$\sigma_{R} = \int d\mathbf{b} \left(1 - \left| \mathbf{e}^{i\chi(\mathbf{b})} \right|^{2} \right)$$
$$\mathbf{e}^{i\chi(\mathbf{b})} = \left\langle \Psi_{0}\Theta_{0} \right| \prod_{i \in P} \prod_{j \in T} \left[1 - \Gamma_{NN} \left(\mathbf{s}_{i} - \mathbf{t}_{j} + \mathbf{b} \right) \right] \left| \Psi_{0}\Theta_{0} \right\rangle$$
$$\Gamma_{NN} \left(\mathbf{b} \right) = \frac{1 - i\alpha_{NN}}{4\pi\beta_{NN}} \sigma_{NN} \exp \left[-\frac{b^{2}}{2\beta_{NN}} \right]$$

NTG
$$e^{i\chi_{NTG}(\mathbf{b})} = \exp\left[-\int d\mathbf{r}\rho_{P}(\mathbf{r})\left\{1 - \exp\left[-\int d\mathbf{r'}\rho_{T}(\mathbf{r'})\Gamma_{NN}(\mathbf{s}-\mathbf{t}+\mathbf{b})\right]\right\}\right]$$

(Nucleon-Target Glauber)

OLA
$$e^{i\chi_{OLA}(\mathbf{b})} = \exp\left[-\iint d\mathbf{r} d\mathbf{r'} \rho_P(\mathbf{r}) \rho_T(\mathbf{r'}) \Gamma_{NN}(\mathbf{s}-\mathbf{t}+\mathbf{b})\right]$$

Zero range $e^{i\chi_{ZR}(\mathbf{b})} = \exp\left[-\int d\mathbf{r}\rho_{P}(\mathbf{r})\rho_{T}(\mathbf{r}-\mathbf{b})\sigma_{NN}\right]$

Glauber model calculation

50 Formalism

$$\sigma_{R} = \int d\mathbf{b} \left(1 - \left| e^{i\chi(\mathbf{b})} \right|^{2} \right)$$

$$e^{i\chi(\mathbf{b})} = \left\langle \Psi_{0}\Theta_{0} \right| \prod_{i \in P} \prod_{j \in T} \left[1 - \Gamma_{NN} \left(\mathbf{s}_{i} - \mathbf{t}_{j} + \mathbf{b} \right) \right] \left| \Psi_{0}\Theta_{0} \right\rangle$$

$$\Gamma_{NN} \left(\mathbf{b} \right) = \frac{1 - i\alpha_{NN}}{4\pi\beta_{NN}} \sigma_{NN} \exp \left[-\frac{b^{2}}{2\beta_{NN}} \right]$$

NTG
$$e^{i\chi_{NTG}(\mathbf{b})} = \exp\left[-\int d\mathbf{r}\rho_{P}(\mathbf{r})\left\{1 - \exp\left[-\int d\mathbf{r}'\rho_{T}(\mathbf{r'})\Gamma_{NN}(\mathbf{s}-\mathbf{t}+\mathbf{b})\right]\right\}\right]$$

Nucleon-Target Glauber)

OLA
$$e^{i\chi_{OLA}(\mathbf{b})} = \exp\left[-\iint d\mathbf{r} d\mathbf{r}' \rho_P(\mathbf{r}) \rho_T(\mathbf{r}') \Gamma_{NN}(\mathbf{s}-\mathbf{t}+\mathbf{b})\right]$$

Zero range

$$e^{i\chi_{ZR}(\mathbf{b})} = \exp\left[-\int d\mathbf{r}\rho_{P}(\mathbf{r})\rho_{T}(\mathbf{r}-\mathbf{b})\sigma_{NN}\right]$$

so Input:

- $\circ \sigma_{NN}$: Total cross section for nucleon-nucleon collisions.
- \circ β_{NN} : Slope parameter of the NN elastic differential cross section
- $\circ \rho_{P}, \rho_{T}$: Projectile, target nucleon density

- For nucleon distribution:
 - ◆ Target (ρ_{T}) ¹²C: proton distr. from electron scattering data; and neutron distr. are fitted harmonic oscillator (HO) distr. to reproduced σ_{R} and σ_{CC} at 950A MeV.
 - ◆ <u>Projectile ($\rho_{\rm P}$) ^AC :</u> proton distr. is HO distr. fitted to $\sigma_{\rm CC}$ measured at RCNP; neutron distr. Is also HO distr. fitted to $\sigma_{\rm R}$ at 950A MeV.

The 9th international conference on Direct Reactions with Exotic Beams (DREB) 2016

7/13/16

Results of Glauber model

- ∞ HO: Hamonic osillator distribution.
- ∞ WS: Woods-Saxon (Two parameters Fermi) distribution.
- β_{pn} : Obtained from Carbon data.

Consistency between low and high energy

DREB2016 DREB2016 July 11-15, 2016 Halifax, Canada

Tran Dinh Trong

Proton RMS radii

Conclusion

- We have measured CCCSs of ¹⁰⁻¹⁸C isotopes at 45A MeV using RI beam at EN Course, RCNP, Osaka University.
- The CCCSs at different beam energies are consistently understood by Glauber model with global parameters set.
- Rms proton radii of ¹²⁻¹⁸C were determined by using Glauber model; they are almost constant. Which is consistent with electron scattering data and AMD prediction.
- The rms radii can be extracted from reaction/ CCCS measurement at low energy.

 D. T. Tran^{A,B}, T. T. Nguyen^{B,C}, I. Tanihata^{A,D}, M. Fukuda^E, H. J. Ong^A, N. Aoi^A, Y. Ayyad^A, P.Y. Chan^A, T. H. Hoang^{A,B},
 T. Hashimoto^F, E. Ideguchi^A, A. Inoue^A, T. Kawabata^G, H. K. Le^B, K. Matsuta^E, M. Mihara^E, S. Momota^H, D. Nagae^I, A. Ozawa^I,
 P.P. Ren^J, H. Sakaguchi^A, J. Tanaka^A, S. Terashima^D, R. Wada^J, W.P. Liu^J, T. Yamamoto^A

^ARCNP, Osaka Univ.; ^BIOP Hanoi, Vietnam; ^CPham Ngoc Thach Univ. Vietnam;
 ^DBeihang Univ. China; ^EDept. of Phys. Osaka Univ.; ^FIBS, Korea;
 ^GDept. of Phys. Kyoto Univ.; ^HKochi Univ. of Tech.; ¹IOP Univ. of Tsukuba;
 ^JIMP, China.

Thank you for your attention!

Charge Changing Cross Section (CCCS) Measurement of Neutron-rich Carbon Isotopes at 50A MeV.

D. T. Tran^{A,B}, T. T. Nguyen^{B,C}, I. Tanihata^{A,D}, M. Fukuda^E, H. J. Ong^A, N. Aoi^A, Y. Ayyad^A,
 P.Y. Chan^A, T. H. Hoang^{A,B}, T. Hashimoto^F, E. Ideguchi^A, A. Inoue^A, T. Kawabata^G,
 H. K. Le^B, K. Matsuta^E, M. Mihara^E, S. Momota^H, D. Nagae^I, A. Ozawa^I, P.P. Ren^J,
 H. Sakaguchi^A, J. Tanaka^A, S. Terashima^D, R. Wada^J, W.P. Liu^J, T. Yamamoto^A

Presenter: Tran Dinh Trong

^ARCNP, Osaka Univ., ^BIOP Hanoi, Vietnam, ^CPham Ngoc Thach Univ. Vietnam,
 ^DBeihang Univ. China, ^EDept. of Phys. Osaka Univ., ^FIBS, Korea, ^GDept. of Phys. Kyoto Univ.,
 ^HKochi Univ. of Tech., ¹IOP Univ. of Tsukuba, ^JIMP, China.

Tran Dinh Trong

The 9th international conference on Direct Reactions with Exotic Beams (DREB) 2016

7/13/16

RCNP

CCCSs of C isotopes 1.3 increase slowly with - σ_{cc} neutron number for 12-18**C** 1.1 This trend is similar \succ with the high energy **(q)**^{1.0}data.

Results of Glauber model

Tran Dinh Trong The 9th international conference on Direct Reactions with Exotic Beams (DREB) 2016 7/13/16 Consistency between low and high energy $\sigma_{R}^{}$ - Exp. 0 1.6 10⁻² σ_{cc} - Exp. (ref. 10⁻⁴ 1.4 σ_{cc} - RCNP · σ_R - Glauber 1.2 σ(barn) σ_{cc} - Glauber 2 4 6 8 10 12 14 16 r (fm) 1.0 0.8 RC RCNP RCN ¹⁴**C** ¹³C ¹⁵C 0.6 1.8 10⁻² (e⁻ ^(e) ^(f) ^(f) ^(f) ^(f) 1.6 **RCNP RCNP** Ó

- ∞ Experiment setup
- ∞ Data analysis
- ∞ Glauber calculation
- Results and discussion
- 5 Conclusion

∞ Literatures

♦ W. Horiuchi at el., PRC75, 044607

$$\sigma_{pN}^{\rm el} = \frac{1 + \alpha_{pN}^2}{16\pi\beta_{pN}} (\sigma_{pN}^{\rm tot})^2. \label{eq:sigma_pn}$$

◆ M. Takechi et al., PRC**79**, 061601

$$\sigma_{NN}^{\text{eff}} = \int_{-\infty}^{+\infty} dp_{\text{rel}} \sigma_{NN}(p_{\text{rel}}) D(p_{\text{rel}}).$$
$$D(p_{\text{rel}}) = \frac{1}{\sqrt{2\pi(\langle p^2 \rangle^P + \langle p^2 \rangle^T)}} \times \exp[-(p_{\text{rel}} - p_{\text{proj}})^2/2(\langle p^2 \rangle^P + \langle p^2 \rangle^T)]$$
$$\sqrt{\langle p^2 \rangle} = 90 \text{ MeV}/c$$

Results of Glauber model calculation

7/13/16

Method: Transmission method

> γ , γ_0 : with C target and without C target

> 1 - P_m : Acceptance factor.

 \succ *t* : target thickness.

- Primary beam: ²²Ne, 80A MeV.
- ♦ Secondary beam: C isotopes, ~50A MeV.

How are proton rms radii measured?

- Electron scattering is the most successful method to investigate the charge distribution of nuclei.
- It could be applied only to stable nuclei.

- ✓ The isotope shift technique has been applied for unstable isotopes.
- Challenging for nuclei with 4<Z<11 due to uncertainty in atomic physics calculation.
- Difficult to access to neutron drip-line due to limitation of beam intensity.

Electron Scattering Experiments

"It would be of great scientific interest if it were possible to have a supply of electrons ... of which the individual energy of motion is greater even than that of the alpha particle."

[Ernest Rutherford, Royal Society, London, (as PRS) 30 Nov 1927]

Tracking and Counting Beam - N_{in}

Na

MUSIC

Targe

FR

Tracking and Counting Beam - N_{ir}

Tran Dinh Trong

The 9th international conference on Direct Reactions with Exotic Beams (DREB) 2016

7/13/16

Count scattered particles – N_{out(Z)}

 $N_{out(Z)} = 1+2+3$

RCNP

Nal

dθ

Experiment

Rutherford fit

GEANT4 simulation

- Acceptance of each MUSIC layer was determined.
- Rutherford scattering was used to fit and calculate outof-acceptance factor.
- Checked with GEANT4 simulation.

0.045

0.040

RCNP

7/13/16

» Nuclear radii and interaction cross section:

$$\sigma_{I}(P,T) = \pi (R_{T} + R_{P})^{2}$$

So Glauber model for interaction cross section works very well from 30A to 1000A MeV

Halifax, Ca

Tran Dinh Trong

Halifax, Canad

Experiment_setup.

Tran Dinh Trong

DRFR2016

Halifax, Canada

Glauber model calculation

> For ¹²C case:

- > ρ_p : from electron scattering data.
- > ρ_n , β_{NN} using fit Glauber model with reaction cross section and CCCS.
- > $\beta_{NN}(E)$: using dependence reaction cross section on energy.

For other isotopes:

Using $\beta_{NN}(E)$ from ¹²C data, fit Glauber model with reaction cross section and CCCS to obtain ρ_P , ρ_n .

Results of Glauber model calculation

Intereaction cross section

