

Experimental study of knockout reaction mechanism using ¹⁴O at 60 MeV/nucleon

Outline:

- 1. Isospin dependence of nucleon correlation
- 2. Knockout reaction mechanism
- 3. Experimental Setup
- 4. Results and discussion
- 5. Summary

Yelei Sun CEA Saclay The University of Hong Kong

DREB2016, Halifax, Canada July 11-15, 2016

Isospin dependence of nucleon correlation

→ More correlations are missing for deeply-bound nucleon in structure calculation, in case of the reaction model is correct

Isospin dependence of nucleon correlation

B. Transfer reaction

Q: Isospin Dependence ?

Knockout reactions: Yes & Strong

A. Gade et al., Phys. Rev. Lett. 93, 042501 (2004).)

Transfer reactions: Weak

^{34,36,46}Ar(*p*, *d*) at 33 MeV/u
J. Lee *et al.*, Phys. Rev. Lett 104, 112701 (2010)
¹⁴O(*d*, *t*)¹³O , ¹⁴O(*d*, ³He)¹³N at 18 MeV/u
F. Flavigny, *et al.*, PRL 110, 122503 (2013)

Systematic difference between two probes !

→Need better understanding of deeply-bound nucleon removal mechanism !

Knockout Reaction--Eikonal Formalism

Knockout Reaction--INC Description

C. Louchart et al., Phys. Rev. C. 83, 011601 (2011).

Our Probe: ¹⁴O Knockout Reaction with Exclusive Measurement

1) Very asymmetric.

 $S_{\rm n} = 23.2 \text{ MeV}, S_{\rm p} = 4.6 \text{ MeV}, \Delta S = 18.6 \text{ MeV}$

- 2) *p*-shell spherical nucleus, *ab initio* calc.
- 3) ¹³N and ¹³O have no bound excited states.

"Core" Excitation + Evaporation

Measure excitation channels Verify the contribution of "core" excitation by invariant mass technique.

$$M = \sqrt{\left(\sum_{i} E_{i}\right)^{2} - \left|\sum_{i} \overrightarrow{P_{i}}\right|^{2}}$$

Experimental setup

Fully Exclusive Measurements of reaction products

Experimental setup *Detection efficiency (Hodoscope)*

due to unfavorable penetrability, this decay route is at least 1000 times less probable than one-proton decay. Therefore

B. B. Skorodumov et al., PRC75, 024607 (2007)

Experimental results

Cross section of 2pn removal to ¹¹C is 60(9) mb. 41(6)mb at 305MeV/nucleon, Z. Y. Sun *et al*, PRC90,037601(2014)

• 3.5 times larger than the $({}^{14}O, {}^{13}O)$ channel (~16.8 mb).

Core excitations or other complicated reaction processes ?

→ To determine the excitation strength quantitatively, need coincidence with protons.

Experimental results

Experimental results

Results and discussion

a) Deduced from previous measurement in PRL, 108, 252501 (2012).

b) For unbound excited states of ¹³O below 7.5 MeV.

c) Limited by the geometric acceptance previous measurement

Y. L. Sun *et al.*, PRC. 93, 044607 (2016). 12

Results and discussion

a) Deduced from previous measurement in PRL, 108, 252501 (2012).

b) For unbound excited states of ¹³O below 7.5 MeV.

c) Limited by the geometric acceptance previous measurement

Y. L. Sun *et al.*, PRC. 93, 044607 (2016). 13

- ✓ Exclusive measurement of 60 MeV/nucleon ¹⁴O beam on a carbon target was performed at RCNP.
- \checkmark The unbound excited states of ¹³O were reconstructed by using the invariant mass method.
- $\checkmark \sigma(^{14}O, ^{11}C) = 60(9)$ mb, which is 3.5 times larger than the deduced oneneutron-removal cross section of 16.8(12) mb.
- ✓ $\sigma(^{14}O, p + ^{12}N/2p + ^{11}C) < 4.6(20)$ mb, with $E^*(^{13}O) < 7.5$ MeV. $\sigma(^{14}O, ^{13}O^*)_{INC} = 6.2 \text{mb}$, for the non-direct population of unbound $^{13}O^*$.
- ✓ The data provide first constrain on the role of core excitation and evaporation process in deeply bound nucleon removal.
- ✓ The consistency with INC indicates that, non-direct reaction processes play an important role in the deeply bound nucleon removal from asymmetric nuclei at intermediate energies.

Thank you!

RIEKN

J. Lee, H. Liu, G. Lorusso, S. Nishimura, S. Takeuchi, J. Wu, Z. Xu

Peking University

Y. Ye, J. Chen, Y. Ge, Z. Li, J. Lou, Q. Li, Y. Sun

RCNP

N. Aoi, Y. Ayyad, T. Hashimoto, E. Ideguchi, H.J. Ong, J. Tanaka, Mn. Tanaka, T. Trong, H. Suzuki, T. Yamamoto

Thank you very much for your attention !