

Isoscalar response of ⁶⁸Ni to α-particle & deuteron probes

Marine VANDEBROUCK

marine.vandebrouck@ganil.fr

DREB2016 - 07/2016

Motivations Nuclear matter incompressibility and ISGMR

Motivations Prediction of a soft monopole mode

Motivations Status of the GR measurement in unstable nuclei

- Understand these excitation modes from stable to exotic nuclei : the IVGDR/PDR has been measured in ⁶⁸Ni, neutron rich Oxygen and Tin isotopes at GSI, in ²⁶Ne at Riken...
- 1st measurement of the ISGMR and ISGQR in unstable nuclei ⁵⁶Ni : ⁵⁶Ni(d.d')⁵⁶Ni* Monrozeau et al., Phys. Rev. Lett. 100, 042501 (2008)

Study of the ISGMR and ISGQR at GANIL using inelastic scattering : ⁶⁸Ni(α,α')⁶⁸Ni* and ⁶⁸Ni(d,d')⁶⁸Ni* Setup: the active target MAYA why?

Setup: the active target MAYA Principle

Setup: the active target MAYA MAYA@LISE

Setup: the active target MAYA Production of the ⁶⁸Ni @GANIL

Results Efficiency

- Geometric efficiency using ACTARSim code (based on Geant4 and ROOT)
- Each simulated event is reconstructed with the code for physical events

Geometric and reconstruction efficiency

⁶⁸Ni(d,d')⁶⁸Ni*

M. Vandebrouck et al., Phys. Rev. Lett. 113, 032504 (2014)

Results ${}^{68}Ni(\alpha, \alpha'){}^{68}Ni^*$ Multipole Decomposition Analysis

 10^{3}

 10^{2}

dơ/dΩ [arb. units]

$$\frac{d\sigma}{d\Omega}\Big|_{exp} (\theta_{CM}, E^*) = \sum_{L=0}^{2} S_L(E^*) \frac{d\sigma_L}{d\Omega}\Big|_{theo} (\theta_{CM}) + \frac{d\sigma_{fond}}{d\Omega} (\theta_{CM})$$

$$E^*(^{68}\text{Ni}) = 13 \text{ MeV}$$

$$\int_{U^*} U^* (\theta_{CM}, E^*) = \frac{10^3}{10^2} U^* (\theta_{CM}) = 17 \text{ MeV}$$

$$\int_{U^*} U^* (\theta_{CM}, E^*) = \frac{10^3}{10^2} U^* (\theta_{CM}) = 17 \text{ MeV}$$

$$\int_{U^*} U^* (\theta_{CM}, E^*) = \frac{10^3}{10^2} U^* (\theta_{CM}) = 17 \text{ MeV}$$

~

 $\begin{array}{c} 8 & 10 \\ \theta_{\text{CM}} \text{ [deg]} \end{array}$

6

Results ${}^{68}Ni(\alpha, \alpha'){}^{68}Ni^*$ Multipole Decomposition Analysis

$$\frac{d\sigma}{d\Omega}\Big|_{exp}\left(\theta_{CM}, E^*\right) = \sum_{L=0}^{2} S_L E^* \frac{d\sigma_L}{d\Omega}\Big|_{theo}\left(\theta_{CM}\right) + \frac{d\sigma_{fond}}{d\Omega}\left(\theta_{CM}\right)$$

Conclusion

Study of giant and pygmy resonances in exotic nuclei at LISE (LOI)

Submitted to GANIL PAC (June 9th/10th 2016)

M. Vandebrouck, J. Gibelin, N. L. Achouri, M. Assié, D. Beaumel, P. Bednarczyk, Y. Blumenfeld, M. Caamaño, S. Calinescu, S. Ceruti, M. Ciemala, F. Delaunay, Z. Dombradi, A. F. Fantina, B. Fernandez-Dominguez, M. Kmiecik, A. Krasznahorkay, U. Garg, J. Giovinazzo, S. Grévy, M. N. Harakeh, N. Kalantar, E. Khan, E. Litvinova, A. Maj, J. Margueron, F. M. Marqués, I. Matea, S. Péru, R. Raabe, T. Roger, S. Ota, O. Sorlin, J. C. Thomas, the ACTAR TPC collaboration and the PARIS collaboration

Outlook Probing giant resonances along isotopic chains

Outlook Probing giant resonances along isotopic chains

Collaboration

J. Gibelin², E. Khan¹, N.L. Achouri², H. Baba³, D. Beaumel¹, Y. Blumenfeld¹, M. Caamaño⁴, L. Càceres⁵, G. Colò⁶, F. Delaunay², B. Fernandez-Dominguez⁴, U. Garg⁷, G.F. Grinyer⁵, M.N. Harakeh⁸, N. Kalantar-Nayestanaki⁸, N. Keeley⁹, W. Mittig¹⁰, J. Pancin⁵, R. Raabe¹¹, T. Roger^{11,5}, P. Roussel-Chomaz¹², H. Savajols⁵, O. Sorlin⁵, C. Stodel⁵, D. Suzuki^{10,1}, J.C. Thomas⁵.

¹ IPN Orsay, Université Paris-Sud, IN2P3-CNRS, F-91406 Orsay Cedex, France

² LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, F-14050 CAEN Cedex, France

³ RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

⁴ Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain

⁵ GANIL, CEA/DSM-CNRS/IN2P3, 14076 Caen, France

⁶ Dipartimento de Fisica Università degli Studi di Milano and INFN, Sezione di Milano, 20133 Milano, Italy

⁷ Physics Department, University of Notre-Dame, Notre Dame, Indiana 46556, USA

⁸ KVI-CART, University of Groningen, NL-9747 AA Groningen, The Netherlands

⁹ National Centre for Nuclear Research ul. Andrzeja Soltana 7, 05-400 Otwock, Poland

¹⁰ NSCL, Michigan State University, East Lansing, Michigan 48824-1321, USA

¹¹ IKS, K.U. Leuven, B-3001 Leuven, Belgium

¹² **CEA-Saclay**, DSM, F-91191 Gif sur Yvette Cedex, France

