Pairing rotations in ground states of open-shell even-even deformed nuclei

Nobuo Hinohara

Center for Computational Sciences, University of Tsukuba, Japan

NSCL/FRIB, Michigan State Univ., USA

Jul. 12, 2016

Direct Reaction with Exotic Beams (DREB2016)

nuclear pairing interaction: a nucleon pair gets additional binding signature of pairing: odd-even mass staggering (OES)

$$\Delta^{(3)}(N) = \frac{(-1)^{N}}{2}[B(N-1) - 2B(N) + B(N+1)]$$

$$\Delta^{\exp}(N, Z) = \frac{1}{2}[\Delta^{(3)}(N-1) + \Delta^{(3)}(N+1)]$$

Energy density functional (mean-field theory):
difficult to compute odd-mass binding energy precisely
experimental OES theoretical pairing gap

new (?) pairing observable: moment of inertia of pairing rotation

superconducting ground state (spontaneous breaking of gauge symmetry) symmetry-restoring zero-energy Nambu-Goldstone mode -- pairing rotation

Brink and Broglia "Nuclear Superconductivity" review: Broglia et al., Phys. Rep. **335**, 1(2000)

Rotational symmetry breaking (for comparison)

moment of inertia ($E(2_1^+)$): magnitude of quadrupole collectivity

Gauge symmetry breaking

pairing rotational moment of inertia: magnitude of pairing collectivity

Theoretical description of NG mode

Symmetry-broken state

Density Functional Theory

Skyrme HFB (HFBTHO, UNEDF1-HFB)

- harmonic oscillator basis
- axial deformation
- □ pairing superconductivity

NG mode excitation

Image: A linite Image: A linite

Quasiparticle Random-Phase Approximation (time-dependent density functional theory)

efficient solution based on linear response theory: Finite-amplitude method (FAM)

Nakatsukasa et al., PRC76, 024318 (2007)

FAM formulation for zero-energy NG mode: NH, PRC**92**, 034321 (2015)

QRPA moment of inertia: Thouless-Valatin

Thouless and Valatin, Nucl. Phys. 31 (1962)211

Pairing rotational MOI in single-closed shell nuclei

Shell gap and pairing rotational moment of inertia

Experimental pairing rotational moment of inertia

$$\mathcal{J}_{\mathrm{nn}}^{-1}(N) = \frac{1}{4}\delta_{2\mathrm{n}}(N)$$

empirical shell gap: difference of 2n separation energies

 $\delta_{2n}(N,Z) = E(N+2,Z) - 2E(N,Z) + E(N-2,Z) = S_{2n}(N,Z) - S_{2n}(N+2,Z)$

weak pairing collectivity

shell model picture (before symmetry breaking)

size of magic shell gap

strong pairing collectivity

collective pairing picture (after symmetry breaking)

measure of gauge symmetry breaking

Pairing NG modes in doubly open-shell nuclei

note: we don't have neutron-proton pairing

Pairing rotational MOI in doubly open-shell nuclei

neutron and proton modes mix in the NG modes in doubly-open shell nuclei -- off-diagonal term in the pairing rotational moment of inertia

More pairing observables in open-shell systems!

 $\begin{aligned} \mathcal{J}_{nn}(N,Z) &= 4[E(N+2,Z) - 2E(N,Z) + E(N-2,Z)]^{-1} \\ \mathcal{J}_{pp}(N,Z) &= 4[E(N,Z+2) - 2E(N,Z) + E(N,Z-2)]^{-1} \end{aligned}$ empirical shell gaps $\mathcal{J}_{np}(N,Z) &= 4[E(N+2,Z+2) - E(N+2,Z) - E(N,Z+2) + E(N,Z)]^{-1} \end{aligned}$ also known as δV_{pn}

Pairing picture of binding energy differences

Summary

<u>Summary</u>

first systematic calculation of pairing rotational MOI in doubly open-shell nuclei Evidence of neutron and proton mixed pairing Nambu-Goldstone modes

Pairing rotational moments of inertia:

new pairing observable from even-even systems only

New interpretation of double binding energy differences:

shell gap and proton-neutron interaction energy in terms of gauge symmetry breaking New motivation for mass measurement experiment:

binding energy difference may determine unknown pairing property

Future extensions, impact to direct reactions

Pair transfer amplitudes: another good pairing observable for gauge symmetry breaking (cf. $B(E2:2_1^+ \rightarrow 0_1^+)$ in rotational case)

Pairing rotation is more universal than expected: even in deformed open-shell systems!

- Importance of pairing rotational picture in Sn isotopes [Potel et al, PRL 107,092501 (2011)]

 \rightarrow extension to open-shell nuclei

Extension with neutron-proton pairing (T=1)

Collaborator: Witek Nazarewicz (MSU)

References: NH and Nazarewicz, Phys. Rev. Lett. **116**, 152502 (2016) NH, Phys. Rev. C **92**, 034321 (2015)