

Second 0⁺ state of unbound ¹²O via the (*p*, *t*) reaction

Daisuke Suzuki Riken Nishina Center daisuke.suzuki@ribf.riken.jp +81-(0)48-467-4958

Direct Reactions with Exotic Beams (DREB2016) July 11 – 15, 2016 Halifax, Canada

¹²O (
$$Z = 8, N = 4$$
) mirrors ¹²Be with $N = 8$

N = 8

0_2^+ isomer in ¹²Be

S. Shimoura *et al.*, Phys. Lett. B 560, 31 ('03) S. Shimoura *et al.*, Phys. Lett. B 654, 87 ('07)

0_2^+ energies and shell quenching at N = 8

Intruder $2s_{1/2}$ component in 0_1^+ and 0_2^+

R. Kanungo et al., Phys. Lett. B 682, 391, 108 ('10)

¹²O and its mirror symmetry

- Shell breaking at Z = 8 ?
- Weakly-bound 2s_{1/2}
 - \rightarrow Reduces Coulomb energy ?
 - \rightarrow Enhances Thomas-Ehrman shift ?

Experimental history

S. Mordechai et al., Phys. Rev. C 32, 999 ('85)

R.A. Kryger et al., Phys. Rev. Lett. 74, 860 ('95)

Missing mass method with (p, t) reaction

CATS: S. Ottini-Hustache *et al.*, Nucl. Instr. Meth. A 431, 476 ('99). Target: P. Dolégiéviez *et al.*, Nucl. Instr. Meth. A 564, 32 ('06). MUST2: E. Pollacco *et al.*, Eur. Phys. J. A 25, 287 ('05).

First study (1 day) at SPEG/GANIL

D. Suzuki, H. Iwasaki, D. Beaumel *et al.*, Phys. Rev. Lett. 103, 152503 ('09). D. Suzuki, Euro. Phys. J. A 48, 130 ('12).

Second study (7 days) at LISE/GANIL

D. Suzuki, H. Iwasaki, D. Beaumel et al., Phys. Rev. C 93, 024316 ('16)

Mirror energy difference of the 0_2^+ state

$$0_1^+$$
 12Be 12O('09) 12O('16)

- How to quantify impact of weak binding to level shift?
- Systematics of 0⁺ mirror pairs' energy differences
- Scaling for charge and mass (= size)

Riisager's universal scaling for 2n halo radii

K. Riisager, D.V. Fedrov, A.S. Jensen, Europhys. Lett. 49, 547 ('00)

Scaling by 3-body hyperradii

$$\rho_0^2 = \sum_{i < k} \frac{m_i m_k}{m m_{\text{tot}}} R_{ik}^2$$

m: unit mass *R_{ik}*: length for *i*-th and *k*-th particles

Binding energy

*B: binding energy

Scaling of mirror energy differences

[1] K. Riisager, D.V. Fedrov, A.S. Jensen, Europhys. Lett. 49, 547 ('00)
[2] A. Muta, T. Otsuka, Prog. Theo. Phys. Suppl. 142, 355 ('01)

Universality of 0⁺ mirror energies

Summary

- Unbound ¹²O was studied by the (*p*, *t*) reaction at GANIL.
- Missing mass spectra were obtained from tritons detected by MUST2 telescopes.
- The 0₂⁺ state of ¹²O was discovered at 1.62(13) MeV.
 Shell closure disappearing at Z = 8
 Level energy shift -0.63 MeV relative to ¹²Be
- Systematics of known O⁺ states
 - Scaling relation of mirror energy differences and binding energies.
 - ¹²O 0₂⁺ state, under the influence of weak binding, represents the lowest energy difference.

Collaborators

H. Iwasaki, D. Beaumel, M. Assié, Y. Blumenfeld, N. De Séréville,S. Franchoo, S. Giron, J. Guillot, F. Hammache, F. Maréchal, A. Matta,L. Perrot, C. Petrache, A. Ramus, J-A. Scarpaci, I. Stefan

F. de Oliveira Santos, S. Grévy, D.Y. Pang, O. Sorlin, P.C. Srivastava, C. Stodel

A. Drouart, A. Gillibert, V. Lapoux, L. Nalpas, J. Pancin, E. Pollacco, P. Roussel-Chomaz

energie atomique • energies alternatives

F. Naqvi, W. Rother

H. Baba, H. Otsu, H. Sakurai, S. Terashima

S. Mitimasa

H. Okamura

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research Świerk

N. Keeley

Backup

Systematics of all known 0⁺ mirror pairs

Level mixing

Setup

CATS: S. Ottini-Hustache *et al.*, Nucl. Instr. Meth. A 431, 476 (1999). Target: P. Dolegieviez *et al.*, Nucl. Instr. Meth. A 564, 32 (2006). MUST2: E. Pollacco *et al.*, Eur. Phys. J. A 25, 287 (2005).

First study (1 day) at SPEG/GANIL

D. Suzuki *et al.*, Phys. Rev. Lett. 103, 152503 ('09).D. Suzuki, Euro. Phys. J. A 48, 130 ('12).

Z = 8 shell closure vanishes

Radius & hyperradius

$$\rho_0^2 = \frac{2(a-2)}{a}R_{cp}^2 + \frac{1}{a}R_{pp}^2$$

K. Riisager, D.V. Fedrov, A.S. Jensen, Europhys. Lett. 49, 547 ('00)

 $R_{cp} = 1.27 (a-2)^{1/3} {
m fm} \,$ $\,$ Assumed. Not given in the literatures.

 $R_{pp} = 2.65~{
m fm}~~$ C.V. Fedrov, A.S. Jensen, K. Riisager, Phys. Rev. C 49, 201 ('94)

a: mass number of the nucleus

	ρ ₀ [fm]	S _{2n} [MeV]	B_{3BD} *
⁶ He	2.57	0.975	0.321
¹¹ Li	3.47	0.369	0.223
¹⁴ Be	3.87	1.266	0.949
¹⁷ B	4.21	1.330	1.178

*) Present work: $B_{3BD} = mS_{2n}\rho_0/h^2$

The calculated values in the table reasonably agree with the values in the literature.

MED & binding energies

Mirror energy difference (experimental values)

$$E_{c} = (S_{2n} - E_{x}^{n}) - (S_{2p} - E_{x}^{p})$$

 S_{2n} : 2*n* separation energy (neutron-rich partner) S_{2p} : 2*p* separation energy (proton-rich partner) E_x^n : excitation energy (neutron-rich state) E_x^p : excitation energy (proton-rich state)

Mirror energy difference (reference)

 $U_{\rm 3BD} = 2\alpha \frac{6(Z-2)}{5\rho_0}$

z: atomic number of proton-rich partner A. Muta, T. Otsuka,

Prog. Theo. Phys. Suppl. 142, 355 ('01)

Binding energy for 2p (unscaled)

$$B = U_{\text{barrier}} + S_{2p} - E_{\text{x}}^p$$

Coulomb barrier energy for 2*p*

$$U_{\text{barrier}} = 2\alpha \frac{Z-2}{\rho_0}$$

Assumed. Not given in the literatures.

Binding energy for 2p (scaled)

 $B_{\rm 3BD} = m B \rho_0^2 / \hbar^2$

m = 938.27 MeV/c² (unit mass)

K. Riisager, D.V. Fedrov, A.S. Jensen, Europhys. Lett. 49, 547 ('00)

For 2 body scaling, replace ρ_0 with R_{cp}