A New Study of ⁵H

Daniel McNeel

University of Connecticut

Motivation:

- "Super-heavy" hydrogen is the most neutron rich system we can observe
- Close to tetra-neutron
- ⁵H has been studied for 50 years with inconclusive results
- Wide variety of energies and widths for the ground state resonance of ⁵H from theory and experiment

Previous Studies of ⁵H

The ⁶He(d,³He)⁵H reaction is our choice for studying ⁵H

Only the ground state should be populated in this reaction.

E_{res}=2.2 ±0.3MeV, Γ≈2.5MeV [Ref.] G.M. Ter-Akopian, Eur.Phys.J. A 25, Supplement 1, 315 (2005)

Particle energy range in the ⁶He(d,³He)⁵H reaction

There is a large dynamic range of energies of the particles in inverse kinematics: ³He particles are 10-12MeV, while ⁵H decay products are 140-300MeV

The complementary ⁶He(d,t)⁵He reaction

⁵He is well understood from studies of ⁴He(d,p)⁵He, making this a good comparison for the ⁵H results

Position and Energy detection is provided by the HiRA¹ array

- 2 layers of Si detectors
- 4 Csl detectors

- Si layer one: 65µm, 32 strips
- Si layer two: 1500µm, double sided strip detector
- DSSD pixels subtend 0.13 degrees in laboratory

Ref. [1] M. S. Wallace et al., Nucl. Instrum. and Meth. A 583, 302 (2007) Ref. [2] https://groups.nscl.msu.edu/hira/pdf/HIRA_final.pdf

Simulations of recoil energy

Q-Value Dependence from DWBA

The figure (a) shows the yield Q-value dependence from DWBA calculations for

 E_d =110 MeV, 0°-10° averaged, E_d =44 MeV, 0°-10° averaged, E_d =44 MeV, 20°-40° averaged

The figure (b) illustrates the effects of Q-value dependence on an intrinsic line shape for different deuteron energies

Results

Kinetic energy of the ejectile

Missing mass spectrum with our best fit profile results: E_R=2.4±0.4MeV Γ=4.8±0.4MeV

Line shapes used in red Monte Carlo histograms. The blue line shape is for a narrow ⁵H peak, which is inconsistent with our data.

Conclusions

- A clear ⁵H signature was observed
- The data are consistent with a broad resonance
- Comparison to ⁵He results supports broad resonance
- Resonance and width consistent with some (not all) theoretical calculations and some experimental data

Acknowledgements

Special thanks to the staff at NSCL for their support and for stable and reliable beam delivery throughout the experiment

Western Michigan University¹/University of Connecitcut²:

D. G. McNeel¹, A. H. Wuosmaa^{1,2}, S. Bedoor^{1,2}, A. S. Newton¹

NSCL/MSU Collaborators:

Z. Chajecki*, W. G. Lynch, W. W. Buhro, J. Manfredi, D.V. Shetty, R. H. Showalter, M. B. Tsang, J. R. Winkelbauer

Washington University in St. Louis collaborators:

K. W. Brown, R. J. Charity, L. G. Sobotka

Argonne National Laboratory:

R. B. Wiringa

This work was supported by the U. S. Department of Energy, Office of Nuclear Physics, under contracts DE-FG02-04ER41320, DE-SC0014552, DE-FG02-87ER40316, and the U.S. National Science Foundation under Grant numbers PHY-1068217 and PHY-1068192.

Di-Neutron vs. Sequential emission

- The black curve shows simulated energy distribution of the triton for di-neutron emission
- The red curve shows simulated sequential emission through a broad ⁴H state
- Monte Carlo simulations of the two extreme cases compared to data in blue

VMC Spectroscopic Overlaps for ⁶He(0⁺)->⁵H+p

Reference	Method	E_R (MeV)	Γ (MeV)
[30]	Cluster, GCM	≈ 3	\approx 1-4
[19]	3Body	2.5-3	3-4
[31]	Cluster complex scaling	1.59	2.48
[3]	Cluster MWS	2-3	4-6
[32]	Cluster, ACCC	$1.9{\pm}0.2$	$0.6{\pm}0.2$
[29]	cluster 3body adiabatic expansion	1.57	1.53
[26, 27]	Cluster Jmatrix RGM	1.39	1.60

Calculations of ⁵H from various theories

Table 1. States in ⁵H relative to the t + n + n threshold (energies and widths of the states are given in MeV).

Method	$1/2^+$		$3/2^+$		$5/2^{+}$	
	E	Г	E	Г	E	Г
Shell model [10]	5.5					
Shell model [11]			10.5		7.4	
HH, 5-body [12]					6	~ 6
RGM [13]	~ 6	>4				
HH, $3 \rightarrow 3$ [8]	~ 2.7	~ 3	~ 6.6	~ 8	~ 4.8	~ 5
GCM [14]	~ 3	1 - 4				
HH, 5-body [9]	~ 2					

L.V. Grigorenko^{1,2,a}, N.K. Timofeyuk³, and M.V. Zhukov⁴

Eur. Phys. J. A **19**, 187–201 (2004)

Comparison to ⁶He+¹²C

This Experiment

⁶He+¹²C with our intrinsic lineshape

60

50

- ⁶He(*p,pp*)⁵H
- ¹²C(⁶He,X)⁵H
- ³H(*t*,*p*)⁵H

• ⁶He(*d*,³He)⁵H

E=1.7 \pm 0.3MeV Γ =1.9 \pm 0.5MeV[ref A.A. Korsheninnikov 2001 PRL 87 number 9]

• ⁶He(*d*,³He)⁵H

E=2.5-3MeV, Γ=3-4MeV [ref M. Meister 2003 PRL 91 number 16]

E=1.8 ± 0.1MeV Γ≤0.5MeV [ref M.S. Golokov 2003 PLB 566 70-75]

Same spectrum, different analysis [ref L.V. Grigorenko 2004 EPJA 20, 419-427]