Type: Contributed Oral/Poster

A new study of ⁵H

Monday, 11 July 2016 17:05 (15 minutes)

We have studied the ground state of the extremely neutron-rich isotope of hydrogen, 5 H, using the 6 He(d, 3 He) 5 H reaction in inverse kinematics. Several measurements exist for 5 H (see Ref. [1]), however different results are in conflict with each other and with many theoretical predictions. The present measurement provides a clear evidence for the 5 H ground state, and the previously unreported 6 He(d,t) 5 He ground state reaction is observed in the same experiment. A 6 He beam at 55 AMeV produced at the National Superconducting Cyclotron Laboratory at Michigan State University bombarded a 1.9 mg/cm 2 (CD₂)n target. The reaction products were detected with HiRA (the High Resolution Array) [2]. The properties of the 5 He ground state are well known from neutron scattering and the 4 He(d,p) 5 He reaction and provide information about the calibration and response of the apparatus. The 3 He and 3 H particles from the 6 He(d, 3 He/ 3 H) 5 H/ 5 He reactions were detected in coincidence with the decay products of the unstable 5 H and 5 He nuclei, providing clean signatures for the transitions of interest. The data reveal clear evidence of the 5 H ground-state resonance at an energy of 2.4±0.4 MeV above the threshold for decay into t+2n, with a width of 4.4±0.4 MeV. Details of the measurement, and a comparison of the results with those of previous measurements and theoretical calculations, will be presented.

- [1] L. V. Grigorenko, Eur. Phys. J. A 20, 419 (2004) and references therein.
- [2] M. S. Wallace et al., Nucl. Instrum. and Meth. A 583, 302 (2007).

Funding Agency

Work supported by the U.S. Department of Energy under Contracts DE-FG02-04ER41320 and DE-FG02-87ER40316, DE-SC0014552 and the U. S. National Science Foundation under Grant Numbers PHY-1068217 and PHY-1068192.

Primary authors: Dr WUOSMAA, Alan (University of Connecticut); MCNEEL, Daniel (University of Connecticut); Dr BEDOOR, Shadi (Texas A&M University)

Co-authors: NEWTON, A.S. (Western Michigan University); Dr SHETTY, D.V. (Grand Valley State University); Dr WINKELBAUER, J. R. (Michigan State University); MANFREDI, Juan (Michigan State University); BROWN, Kyle (Washington University at St. Louis); Dr SOBOTKA, L.G. (Washington University at St. Louis); Dr TSANG, M. B. (Michigan State University); Dr CHARITY, R. J. (Washington University at St. Louis); Dr SHOWALTER, R.H. (Michigan State University); Dr MARLEY, S.T. (Louisiana State University); Dr BUHRO, W. W. (Michigan State University); Dr LYNCH, W.G. (Michigan State University); Dr CHAJECKI, Z. (Western Michigan University)

Presenter: MCNEEL, Daniel (University of Connecticut)

Track Classification: Exotic structures through direct reactions