Description of transfer reactions with coupled-channels Born approximation

Tokuro Fukui

Nuclear Data Center, Japan Atomic Energy Agency

in collaboration with Y. Kanada-En'yo, Y. Kikuchi, T. Matsumoto, K. Ogata, T. Suhara, Y. Taniguchi, and M. Yahiro

12/July/2016

Introduction

Description of transfer reactions (conventional approach)

✓ The transition matrix for the A(a, b)B reaction within the **distorted-wave Born approximation (DWBA)**.

$$T_{\text{DWBA}} = \left\langle \Psi_{\beta}^{(-)} \middle| V_{xb} \middle| \Psi_{\alpha}^{(+)} \right\rangle$$

- ✓ The optical potential $U_{aA}(U_{bB})$ for the a + A(b + B) 2-body system generates the distorted wave.
- ✓ One-step transition induced by the residual interaction V_{xb} (V_{xA}) for the post (prior) form is assumed.

Introduction

Description of transfer reactions (conventional approach)

✓ The transition matrix for the A(a, b)B reaction within the **distorted-wave Born approximation (DWBA)**.

$$T_{\rm DWBA} = \left\langle \Psi_{\beta}^{(-)} \middle| V_{xb} \middle| \Psi_{\alpha}^{(+)} \right\rangle$$

- ✓ The optical potential $U_{(U_{a})}$ for the a + A(b + B) 2 body system generates the diagonal of C an DWBA describe the reaction
- ✓ **One-step tran** even if *a* or *B* is **loosely bound system**? for the post (prior) form is assumed. $c_b(V_{xA})$

Model

Beyond DWBA

M. Kamimura *et al.*, Prog. Theor. Phys. Suppl. No. 89, 1 (1986).
N. Austern *et al.*, Phys. Rep. **154**, 125 (1987).
M. Yahiro *et al.*, Prog. Theor. Exp. Phys. **2012**, 01A209 (2012).

 ✓ Coupled-channels Born approximation (CCBA) with the continuum-discretized coupled-channels (CDCC) method.

$$T_{\text{CCBA}} = \left\langle \Psi_{\beta(\text{CDCC})}^{(-)} \middle| V_{xb} \middle| \Psi_{\alpha(\text{CDCC})}^{(+)} \right\rangle$$

- ✓ The optical potential $U_{xA}(U_{bA})$ for the subsystem x + A(b + A) generates the distorted wave based on the 3-body model.
- ✓ The CDCC wave functions both in the initial and final channels.
 - \rightarrow **Remnant term** is canceled out exactly.
 - \rightarrow **Rearrangement component** is involved implicitly.

Model

Breakup process

 $\checkmark\,$ Decomposition of the transition matrix

$$T_{CCBA} = \underline{T}_{\beta(el),\alpha(el)} + \underline{T}_{\beta(el),\alpha(br)} + \underline{T}_{\beta(br),\alpha(el)} + \underline{T}_{\beta(br),\alpha(br)}$$

$$A = \begin{bmatrix} b & & & \\ b & & & \\ c &$$

Model

Breakup process

 BC is implicitly taken into account in DWBA as "absorption".

✓ Decomposition of the transition matrix
 ✓ BT is never involved in DWBA.

$$T_{\rm CCBA} = T_{\beta(\rm el),\alpha(\rm el)} + T_{\beta(\rm el),\alpha(\rm br)} + T_{\beta(\rm br),\alpha(\rm el)} + T_{\beta(\rm br),\alpha(\rm br)}$$

Result 1 T. Fukui *et al.*, Phys. Rev. C 91, 014604 (2015).

- ✓ The ⁸B(d, n)⁹C reaction is paid attention with astrophysical interest.
- ✓ Significant breakup effect (58%) can be seen at the forward angles of the angular distribution of the cross section.

Breakup effects of each path

 \checkmark The BC is weak and the ET result can be regarded as that of DWBA.

Breakup effects of each path

- \checkmark The BC is weak and the ET result can be regarded as that of DWBA.
- ✓ Strong interferences between the ET and the BT in each channel enhance the cross section. → Never involved in DWBA.

Breakup effects of each path

- \checkmark The BC is weak and the ET result can be regarded as that of DWBA.
- ✓ Strong interferences between the ET and the BT in each channel enhance the cross section. → Never involved in DWBA.
- \checkmark The BT among continuum states is negligible.

Dynamical change of transferred angular momentum *l*

Breakup effect on S_{18} **of** $^{8}B(p, \gamma)^{9}C$

Future work

- (1) Inclusion of the 3-body configuration in ${}^{9}C (p + p + {}^{7}Be)$.
- (2) The CCBA analysis of the mirror reaction ${}^{8}\text{Li}(d, p){}^{9}\text{Li}$.

[12] B. Guo et al., Nucl. Phys. A761, 162 (2005).

In the second second

N. Anantaraman *et al.*, Nucl. Phys. **A313**, 445 (1979). F. D. Becchetti *et al.*, Nucl. Phys. **A303**, 313 (1978).

In <u>16O(6Li, d)²⁰Ne(g.s.) to search surface manifestation of cluster</u>

Improvement

- (1) Diffraction pattern of the 1st and 2nd peaks
- (2) Reasonable values of the normalization factors
 - \rightarrow Governed by reliabilities of both the α -¹⁶O WF and OMP

N. Anantaraman *et al.*, Nucl. Phys. **A313**, 445 (1979). F. D. Becchetti *et al.*, Nucl. Phys. **A303**, 313 (1978).

Breakup effects of ⁶Li

 Decomposition of the CDCC distorted wave into elastic and breakup channels.

$$\chi_{ ext{cDCC}}(oldsymbol{r}_i) = \chi_0(oldsymbol{r}_i) + \chi_c(oldsymbol{r}_i)$$

- ✓ Full ~ Elastic transfer (ET) ≠ No back coupling (BC)
 - → Breakup transfer (BT) is negligible. Only the BC (CC due to off-diagonal potentials) is essential.

$$\begin{array}{ccc} K_i + U_{00} - E_0 & U_{0c} \\ U_{c0} & K_i + U_{cc} - E_c \end{array} \begin{pmatrix} \chi_0 \\ \chi_c \end{pmatrix} = 0$$

→ DWBA can provide reasonable results, if an appropriate ⁶Li-OMP, in which BC is implicitly taken into account as its imaginary part, is given.

T. Fukui *et al.*, Prog. Theor. Phys. 125, 1193 (2011)T. Fukui *et al.*, Phys. Rev. C **91**, 014604 (2015).

Summary

CCBA analyses

Why is the breakup effect large?

Why opposite?

→ Explained in detail in T. Fukui *et al.*, Phys. Rev. C 91, 014604 (2015).

Future work

Iransfer reaction to unbound state (ex. ${}^{4}\text{He}(d, p){}^{5}\text{He}$)

✓ The transition matrix of the post-form representation for (d, p) reaction

$$T_{\text{DWBA}}^{(\text{post})} = \left\langle \chi_{\beta}^{(-)} \psi_n \middle| \psi_d \chi_{\alpha}^{(+)} \right\rangle$$

$$= \int d\boldsymbol{r}_{\alpha} \int d\boldsymbol{r}_d \chi_{\beta}^{*(-)}(\boldsymbol{r}_{\alpha}, \boldsymbol{r}_d) \psi_n^*(\boldsymbol{r}_{\alpha}, \boldsymbol{r}_d) V_{pn}(\boldsymbol{r}_d) \psi_d(\boldsymbol{r}_d) \chi_{\alpha}^{(+)}(\boldsymbol{r}_{\alpha}).$$

$$= \int d\boldsymbol{r}_{\alpha} \int d\boldsymbol{r}_d \chi_{\beta}^{*(-)}(\boldsymbol{r}_{\alpha}, \boldsymbol{r}_d) \psi_n^*(\boldsymbol{r}_{\alpha}, \boldsymbol{r}_d) V_{pn}(\boldsymbol{r}_d) \psi_d(\boldsymbol{r}_d) \chi_{\alpha}^{(+)}(\boldsymbol{r}_{\alpha}).$$

$$= \int d\boldsymbol{r}_{\alpha} \int d\boldsymbol{r}_d \chi_{\beta}^{*(-)}(\boldsymbol{r}_{\alpha}, \boldsymbol{r}_d) \psi_n^*(\boldsymbol{r}_{\alpha}, \boldsymbol{r}_d) V_{pn}(\boldsymbol{r}_d) \psi_d(\boldsymbol{r}_d) \chi_{\alpha}^{(+)}(\boldsymbol{r}_{\alpha}).$$

✓ The prior form

$$T_{\text{DWBA}}^{(\text{prior})} = \left\langle \tilde{\chi}_{\beta}^{(-)} \psi_{n} \middle| V_{n\alpha} \middle| \psi_{d} \chi_{\alpha}^{(+)} \right\rangle$$

$$p = \int d\mathbf{r}_{\alpha} \int d\mathbf{r}_{d} \tilde{\chi}_{\beta}^{*(-)}(\mathbf{r}_{\alpha}, \mathbf{r}_{d}) \psi_{n}^{*}(\mathbf{r}_{\alpha}, \mathbf{r}_{d}) V_{n\alpha}(\mathbf{r}_{\alpha}, \mathbf{r}_{d}) \psi_{d}(\mathbf{r}_{d}) \chi_{\alpha}^{(+)}(\mathbf{r}_{\alpha}).$$
oscillate attenuate attenuate
$$\mathbf{r}_{d} \quad \mathbf{r}_{\beta} \quad \mathbf{r}_{p}$$

$$\mathbf{r}_{a} \quad \mathbf{r}_{n}$$

$$5\text{He} \quad \alpha$$

Future work

n

Transfer reaction to unbound state (ex. ⁴**He**(*d*, *p*)⁵**He**)

✓ The transition matrix of the post-form representation for $(d \ p)$ reaction

 $T_{\rm DW}^{\rm (p)}$ The distorted wave $\tilde{\chi}_{\beta}^{(-)}$ should be exact.

 $\rightarrow \text{The CCBA approach is necessary for the final channel.} \begin{array}{c} t \text{ converge.} \\ T_{\text{DWBA}}^{(\text{prior})} \rightarrow T_{\text{CCBA}}^{(\text{prior})} & \stackrel{+)}{}_{\chi}(\boldsymbol{r}_{\alpha}). \end{array}$

$$= \int d\boldsymbol{r}_{\alpha} \int d\boldsymbol{r}_{d} \tilde{\chi}_{\beta}^{*(-)}(\boldsymbol{r}_{\alpha}, \boldsymbol{r}_{d}) \psi_{n}^{*}(\boldsymbol{r}_{\alpha}, \boldsymbol{r}_{d}) V_{n\alpha}(\boldsymbol{r}_{\alpha}, \boldsymbol{r}_{d}) \psi_{d}(\boldsymbol{r}_{d}) \chi_{\alpha}^{(+)}(\boldsymbol{r}_{\alpha})$$

oscillate attenuate attenuate

These respectively attenuate for two independent coordinates. → The integration does converge.