2016.07.14 DREB2016

Study of Gamow-Teller strength from ¹³²Sn via the inverse kinematics (p,n) reaction

Department of Physics, Kyushu University Jumpei YASUDA

Motivation

Fig. 1 (a) Charle of the nuclei in which the applicability of various classes of theoretical models is indicated. Ab initio models can rough the nuclei in which the applicability of various classes of theoretical models is indicated. Ab initio models can rough the nuclei to the description of the regions close to shell-closures for heavier nuclei. Density-functional theories are best-suited for the description of (medium)-heavy nuclei. • Gamow-Teller resonance, Spin Dipole resonance, Giant Dipole resonance etc... In particular for Gamow-Teller transitions (b), the regions in which shell-models can be applied are limited to nuclei with A #6454459 are investigated for the description of the regions in which shell-models can be applied are limited to nuclei with A #6454459 are investigated for the description of the regions in which shell-models can be applied are limited to nuclei with A #6454459 are investigated for the description of the regions in which shell-models can be applied are limited to

Gamow-Teller transition

- Directly connect with a half life of β-decay
- GT Resonances (GTR) : High excitation mode
 - Collective motion in spin-isospin space

• Strength : B(GT)

Cannot access by β-decay due to Q-value

Z+1

Е

Charge Exchange (CE) reaction

- CE reaction at intermediate energy
 - can access any Ex. energy
 - β decay is limited by Q-window
 - Selectivity to ΔT=1, ΔS=1
 - Gamow-Teller (GT), Spin-Dipole (SD) etc..
 - Proportionality

CE c.s.
$$\frac{d\sigma}{d\Omega}(q=0) = \hat{\sigma}B(GT)$$

- Powerful tool to study GTR
 - Limited to stable, low-lying state in light unstable-nuclei

CE reactions for RI beams are required

100

200

300

400

beam energy (MeV)

500

600

700

(p,n) CE reactions for RI beam

Missing mass spectroscopy with RI beam

• Detect recoil neutron, residual is used just tag for (p,n) reaction.

High statistics

- RI beam (~10⁶) x thick target (~100mg/cm²) x large n-detector acceptance (FPL~1m)
 - \sim Stable p-beam (160nA) x 100mg x acceptance (FPL~100m)

Simple kinematics

• all kinematics information from the measurement of neutron (2 body kinematics)

Extensive Extensive

• can be applied to any mass region and to any excitation energy region

 \star improve S/N ratio by tagging of (p,n) reaction

(p,n) measurement with WINDS + SAMURAI

• Beam

- High Intensity : >10^4 pps
- Intermediate kinetic energy : 200~300 MeV/u
 - can access to far from the stability line

Neutron detection

- WINDS(Wide angle Inverse kinematics Neutron Detectors for SHARAQ) : 73 scintillators
 - cover wide angular range

Residue tag

- SAMURAI
- Large acceptance
 - measure all decay particle in one setting

Experimental setup

Slow neutron detector WINDS

Wide angular acceptance

- •73 plastic scintillation counter
- ${\color{black} \Longrightarrow} \theta_{lab} = 20 \sim 120^\circ$, FPL = 900,1100mm

• Energy range

- \bullet TOF : 20 \sim 250 ns, Tn : 0.2 \sim 10 MeV
- Low threshold
 - ullet Threshold: \sim 40 keVee
 - Overall Efficiency (include acceptance) :
 ~10% @θ_{cm}~2deg

Result ~PID of heavy residues~

• TOF

- plastic counter SBT1,2 and HODS
- resolution : $\sigma_t \sim 60 \text{ ps}$

• ΔE

- plastic counter HODS (5mm)
- resolution : $\sigma_{\Delta E}/\Delta E \sim 0.9$ %

• Βρ

- drift chamber BDC1,2, FDC1,2
- SAMURAI magnet : 2.56T
- resolution : $P/\sigma_P \sim 1300$

• $\sigma_A = 0.16$ 6.1 σ separation • $\sigma_Z = 0.22$ 4.5 σ separation

Large acceptance ➡all decay channel was measured with good resolution

Kinetic locus

A preliminary result of excitation energy spectrum

- ¹³²Sb ch (gamma-decay ch)
 - peak at backward angle(θ cm \sim 6deg)
 - ΔL>0 transition

¹²⁹⁻¹³¹Sb ch (particle-decay ch)

- A bump around 17 MeV
 - peak at forward angle (θ cm \sim 2deg)

ΔL=0 : Gamow-Teller resonance

- A bump around 25 MeV
 - peak at backward angle (θ cm \sim 5deg)
 - **ΔL=1** : Spin-Dipole resonance

Multipole-Decomposition analysis will be done to determine the GT peak position • analysis is ongoing

Summary

• GTR study at any Ex & (A,Z)

• WINDS + SAMURAI setup for (p,n) reaction on unstable nuclei

- WINDS : wide angular coverage θ_{lab} 20— 120deg (4 π configuration)
- SAMURAI : Large acceptance

• ¹³²Sn(p,n) experiment was performed

- successfully measure all decay channel with good resolution $\sigma A \sim 0.16$, $\sigma Z \sim 0.24$
- can be access to high Ex energy ~30MeV
- (p,n) study can be extended to A~100 region

• Perspective

- 132Sn(p,n) study
 - MDA —> B(GT) distribution on 132Sn
- (p,n) reactions on ¹¹Li, ²⁴O, ⁴⁸Cr, ⁶⁴Ge (N=Z)

Collaborators

M. Sasano, H. Baba, W. Chao, M. Dozono, N. Fukuda, N. Inabe, T. Isobe, D. Kamaeda,

T. Kubo, M. Kurata-Nishimura, E. Milman, T. Motobayashi, H. Otsu, V. Panin, W. Powell, M. Sako,

- H. Sato, Y. Shimizu, H. Sakai, L. Stuhl, H. Suzuki, T. Suwat, H. Takeda, T. Uesaka, K. Yoneda,
- J. Zenihiro,

K. Yako, S. Shimoura, S. Ota, S. Kawase, Y. Kubota, M. Takaki, S. Michimasa, K. Kisamori, C.S. Lee, H. Tokieda, M. Kobayashi, S. Koyama,

T. Kobayashi, T. Sumikama, T. Tako,

Murakami, N. Nakatsuka, M. Kaneko,

J. Yasuda, T. Wakasa, S. Sakaguchi,

D. Mucher, S. Reichert,

G. Jhang, J.W. Lee

T. Nakamura, Y. Kondo, Y. Togano, M. Shikata, J. Tsubota,

Y. Matsuda,

R.G.T. Zegers, E.D. Bazin, N. Kobayashi,

A. Krasznahorkay

Summary

• GTR study at any Ex & (A,Z)

• WINDS + SAMURAI setup for (p,n) reaction on unstable nuclei

- WINDS : wide angular coverage θ_{lab} 20— 120deg (4 π configuration)
- SAMURAI : Large acceptance

• ¹³²Sn(p,n) experiment was performed

- successfully measure all decay channel with good resolution $\sigma A \sim 0.16$, $\sigma Z \sim 0.24$
- can be access to high Ex energy ~30MeV
- (p,n) study can be extended to A~100 region

• Perspective

- 132Sn(p,n) study
 - MDA —> B(GT) distribution on 132Sn
- (p,n) reactions on ¹¹Li, ²⁴O, ⁴⁸Cr, ⁶⁴Ge (N=Z)

back up

¹³²Sn beam production

• Total beam Intensity

• 1.4 x 10⁴ pps

•PID by BigRIPS

- $\sigma_{z} = 0.24$
- $\sigma_{A/Q} = 0.0014$

• Purity

• ¹³²Sn : 40%

	purity [%]
132Sn	40.11
133Sn	9.47
131Sn	9.50
135Sb	3.88
134Sb	4.28
130in	3.24
129In	1.96

Overall Efficiency

WINDS excitation energy resolution

GEANT simulation

- intrinsic timing resolution WINDS : 500 ps
- uncertainty for FPL : $\Delta L/L = 10\%$
- resolution for Ex : $1.5 \sim 3$ MeV (FWHM)

B.G. source

prompt-γ

- can be separate by TOF information
 - cut fast TOF event at Hardware & Software level

•White b.g.

- 2 kHz for all WINDS bars
- estimate by using beam channel 132Sn->132Sn

• Neutron from SBT & cell

- SBT thickness (H10C9)
 - Density : ~1g/cm³, Thickness :1.2mm
 - ~ 6 x 10^{21} /cm³ for H in SBT
- haver cell
 - Density 8.3 g/cm3, Thickness 19um
 - ~ 1.6 x 10²⁰ /cm³
- Liq. H thickness
 - Density : ~70.85mg/cm³, Thickness : 10mm
 ~ 2 x 10²² /cm³
- estimate by Empty cell run

• Decay neutron

• estimate by NEBULA On/Off

Back ground

TOF analysis

• Plastic counter HODS & SBT1,2

- HODS : 6 plastic scintillation with size of 450 x 100 x 5 mm³
- SBT1,2 : 130 x 130 x 5 mm³
- FPL ~12.5 m
- Resolution estimation
 - Empty cell & beam trigger
- SBT1,2 timing resolution (average of SBT1,2)
 - σ_t = 17ps (w/ slew correction)
 - < \rightarrow σ_t = 46 ps (w/o slew correction)
- **TOF (SBT1,2-HODS)** : σ = 63ps

[ns]

Momentum analysis

Input parameter

- Upstream vector (X1, A1), Magnetic Field, Downstream position (X2)
- A1 was derived by using 3 tracking detectors
- \Rightarrow High angular resolution $\sigma A \sim 0.3$ mrad

 $<->\sigma A \sim 0.8$ mrad (just use 1 tracking chamber)

Resolution : P/σP = 1300

<-> P/ σ P = 800 (just use 1 tracking chamber for ini. p)

ΔE analysis

- Energy loss at plastic scintillator HODS
 - HODS thickness : ~ 6 mm
 - Non-uniformity ~ 20%
 - Energy loss ~ 6000 MeV
 - <u>Correct position dependence by using</u>
 <u>FDC2 tracking information</u>
- Resolution : $\sigma_{\Delta E}/\Delta E = 0.9\%$

