Nuclear structure study for the neutron-rich nuclei beyond ¹³²Sn

He Wang

RIKEN Nishina Center

International conference on Direct Reactions with Exotic Beams (DREB), July 11-15, 2016, Saint Mary's University, Halifax, Canada

Content

> Motivation

➤Experiment

▶ Results on the first 2⁺ states in ¹³⁶Sn and ¹³²Cd

➤Summary

Motivation I

Motivation I

Motivation II

$E_x(2^+)$ in the "southeast" quadrant

2⁺ state unknown

Studying region

2⁺ state unknown

Experimental method

One- and two-proton removal reactions following fission of U
-- to access the exotic neutron-rich nuclei

In-beam gamma-ray spectroscopy
-- to identify the low-lying excited states

Experiment

Radioactive Isotope Beam Factory : BigRIPS and ZeroDegree

Experimental setup

Superconducting Ring Cyclotron (SRC)

Experimental setup

Experimental setun

DALI2 array

186 Nal(Tl) detectors

Results

2⁺ state unknown

The first 2⁺ state in ¹³⁶Sn

One-proton removal reaction

HW, N. Aoi et al., Prog. Theor. Exp. Phys. 2014, 023D02(2014)

Mass number A 134 136 138 140 142 144 146 148 150 152 800 a) ○ *N***=86** Ο Ο [keV]600 Ο Ο Ο $E_x(\mathcal{Z}_1^+)$ 400 Ο Ο 200 Present work 0 48 50 52 56 58 60 62 64 66 54 Proton number Z

≥ Z = 50 magicity in N = 86 isotones $≥ \text{Constant } E_x(2^+) \text{ beyond } N = 82 → \text{Seniority scheme}$ $≥ \text{Asymmetric } E_x(2^+) \text{ pattern around } N = 82$

≥ Z = 50 magicity in N = 86 isotones $≥ \text{Constant } E_x(2^+) \text{ beyond } N = 82 → \text{Seniority scheme}$ $≥ \text{Asymmetric } E_x(2^+) \text{ pattern around } N = 82$

≥ Z = 50 magicity in N = 86 isotones $≥ \text{Constant } E_x(2^+) \text{ beyond } N = 82 → \text{Seniority scheme}$ $≥ \text{Asymmetric } E_x(2^+) \text{ pattern around } N = 82$

Possible reason

Reduction of pairing?

 $<--E_x(2^+)$ is determined by the strength of pairing

 $\Delta^{(3)}(N) = (-1)^{N}[B(N-1) + B(N+1) - 2B(N)]/2$ 1.41.2 $\Delta^{(3)}$ [MeV] 1.0 0.8 • Sn (Z = 50)**N<82** |>82 0.6 70 72 82 84 86 88 90 92 68 74 76 78 80 Neutron Number

J. Hakala, et al., Phys. Rev. Lett. 109, 032501(2012).

Results

2⁺ state unknown

Summary

- Nuclear structure study for the nuclei beyond ¹³²Sn One- and two-proton removal In-beam gamma-ray spectroscopy
- First 2⁺ state in ¹³⁶Sn Seniority scheme holds beyond N = 82 and asymmetric $E_x(2^+)$ pattern
- First 2⁺ state in ¹³²Cd
- > Neutron pairing reduction beyond N = 82
- Future experimental study in this region Mass measurement, B(E2)

Collaborators

HW, N. Aoi, H. Baba, P. Doonerbal, Zs. Dombradi, Y. Kondo, J. Lee, H. Liu, M. Matsushita, T. Motobayashi, D. Nishimura, H. Otsu, H. Sakurai, D. Sohler, D. Steppenbeck, Y. Sun, S. Takeuchi, Z. Tian, Zs. Vajta, T. Yamamoto, Z. Yang, Y. Ye, R. Yokoyama, and K. Yoneda

RIKEN Nishina Center, RCNP, Osaka, CNS, ATOMKI, Peking Univ., Univ. of Hongkong, Rikkyo Univ., TiTech, Univ. of Tokyo, Tokyo Univ. of Science