Tetra-neutron states populated by ${ }^{4} \mathrm{He}\left({ }^{8} \mathrm{He},{ }^{8} \mathrm{Be}\right)$ reaction

Exotic system populated by exotic reaction

S. Shimoura

CNS, University of Tokyo

K. Kisamori et al., Phys. Rev. Lett. 116, 052501

Tetra-neutron

- Multi-neutron System
- Neutron cluster (?) in fragmentation of ${ }^{14} \mathrm{Be}$ PRC65, 044006 (2002)
- NN, NNN, NNNN interactions
- Neutron-Neutron interaction
- T=3/2 NNN force
-> 3-body force in neutron matter
- Ab initio type calculations
- Multi-body resonances
- Correlations in multi-fermion scattering / resonant (?) states

Historical Review

~ search for a bound state of $4 n \sim$

1960s

fission of Uranium

- No evidence for particle stable state of tetra-neutron
J. P. Shiffer Phys. Lett. 5, 4, 292 (1963)

1980s

${ }^{4} \mathrm{He}\left(\pi^{-}, \pi^{+}\right)$reaction

- Only upper limit of cross section was decided. J. E. Unger, et al., Phys. Lett. B 144, 333 (1984)

Bound state: No clear evidence.

2000s

* Breakup of
- Candidates of bound tetra-neutron were observed.
F. M. Marques, et al, Phys. Rev. C 65, 044006 (2002)

2000s

- Theoretical work
- ab-initio calculation NN, NNN interaction

S. C. Piper, Phys. Rev. Lett. 90, 252501 (2003)
- Bound ${ }^{4} \mathrm{n}$ cannot exist
- Possible resonance stete $\sim 2 \mathrm{MeV}$

Resonance state : Possibility of the state is still an open and fascinating question.

Tetra-neutron system produced by exothermic double-charge exchange reaction

Almost recoil-less condition with ${ }^{4} \mathrm{He}\left({ }^{8} \mathrm{He}\right.$, $\left.{ }^{8} \mathrm{Be}\right) 4 \mathrm{n}$ reaction around 200 A MeV

$$
{ }^{4} \mathrm{He} \rightarrow 4 \mathrm{n}
$$

Recoil-less $4 n$ system via DCX using internal energy of ${ }^{8} \mathrm{He}$

S.C. Pieper et al., PRL 90, 252501 (2003)

Reaction Mechanism

${ }^{4} \mathrm{He} \rightarrow 4 \mathrm{n}$

$$
\left[\left(\vec{\tau}_{\mathrm{p}} \cdot \vec{\tau}_{\mathrm{t}}\right)\left(\vec{\sigma}_{\mathrm{p}} \cdot \vec{\sigma}_{\mathrm{t}}\right) r_{\mathrm{t}} Y_{1}\left(\hat{r}_{\mathrm{t}}\right)\right]^{2}
$$

Level diagrams

$q_{\text {min }} \sim 10 \mathrm{MeV} / \mathrm{c}$

RI Beam Factory at RIKEN

3 injectors + cascade of 4 cyclotrons

$$
\Rightarrow \text { several to } 345 \mathrm{MeV} / \text { nucleon }
$$

A variety of primary beams ($\mathrm{d}(\mathrm{pol})$ to U)

 \title{
Experimental
 \title{
Experimental Results
} Results
}

CRDCs

Acceptance for ${ }^{8} \mathrm{Be}(2+)$ was 13% of that for ${ }^{8} \mathrm{Be}(0+)$ A few events could be from ${ }^{8} \mathrm{Be}(2+)$.

Experimental Results

Reaction time \& excitation energy

 for intermediate-energy "inelastic-type scattering"$$
\omega \ll \mu c^{2}(\gamma-1) \simeq \frac{1}{2} \mu c^{2} \beta^{2}
$$

$$
\begin{aligned}
& \Delta E \cdot \Delta t \sim 2 \pi \hbar \\
& \omega_{\max } \sim \frac{2 \pi \hbar \cdot \beta c}{2 R} \simeq 100 \beta \mathrm{MeV}
\end{aligned}
$$

Off energy shell
$E / A \sim 200 \mathrm{MeV}: \beta \sim 0.6: \omega_{\max } \sim 60 \mathrm{MeV}$

Direct Part

c.f. Continuum spectrum with n-n FSI

L.V. Grigorenko, N.K. Timofeyuk, M.V. Zhukov, Eur. Phys. J. A 19, 187 (2004)

$$
\begin{aligned}
& \mathcal{A} \Phi_{0}\left(\boldsymbol{r}_{12}, \boldsymbol{r}_{34}, \boldsymbol{r}_{\alpha}\right) \sim \\
& {\left[\left(\frac{r_{12}^{2}}{a^{2}}-\frac{3}{2}\right)-\left(\frac{r^{2}}{a^{2}}-\frac{3}{4}\right)\right] \exp \left[-\frac{r^{2}}{a^{2}}-\frac{r_{12}^{2}}{2 a^{2}}-\frac{r_{34}^{2}}{2 a^{2}}\right] \times(1,2) \chi(3,4)} \\
& {\left[\left(\frac{r_{\alpha}^{2}}{(a / \sqrt{2})^{2}}-\frac{3}{2}\right)-\frac{2 \vec{r}_{12} \cdot \vec{r}_{34}}{a^{2}}\right] \exp \left[-\frac{r_{\alpha}^{2}}{a^{2}}-\frac{r_{12}^{2}}{2 a^{2}}-\frac{r_{34}^{2}}{2 a^{2}}\right] \times(1,3) \chi(4,2)} \\
& {\left[\left(\frac{r_{\alpha}^{2}}{(a / \sqrt{2})^{2}}-\frac{3}{2}\right)+\frac{2 \vec{r}_{12} \cdot \vec{r}_{34}}{a^{2}}\right] \exp \left[-\frac{r_{\alpha}^{2}}{a^{2}}-\frac{r_{12}^{2}}{2 a^{2}}-\frac{r_{34}^{2}}{2 a^{2}}\right] \not \chi(1,4) \chi(2,3)}
\end{aligned}
$$

$$
\vec{r}_{\alpha}=\frac{\vec{r}_{1}+\vec{r}_{2}}{2}-\frac{\vec{r}_{3}+\vec{r}_{4}}{2} \quad \chi(i, j)=\frac{1}{\sqrt{2}}(\uparrow(i) \downarrow(j)-\downarrow(i) \uparrow(j))
$$

Fourier Transform: $\mathcal{A} \Phi_{0}\left(\boldsymbol{r}_{12}, \boldsymbol{r}_{34}, \boldsymbol{r}_{\alpha}\right) \rightarrow \mathcal{A} \tilde{\Phi}_{0}\left(\boldsymbol{k}_{12}, \boldsymbol{k}_{34}, \boldsymbol{k}\right)$

$$
\begin{array}{rl}
\int\left|\mathcal{A} \tilde{\Phi}_{0}\right|^{2} d^{3} k d^{3} k_{12} d^{3} k_{34} \delta\left(E-\epsilon-\epsilon_{12}-\epsilon_{34}\right) \quad \propto \quad X^{11 / 2} \exp (-X) \\
\text { Peak at } X=11 / 2 ; E \sim 60 \mathrm{MeV} & X=E / \epsilon_{a} \quad \epsilon_{a}=\frac{\hbar^{2}}{m_{\mathrm{N}} a^{2}}=11 \mathrm{MeV}
\end{array}
$$

Fourier Transform is expansion with plane waves $=>$ correlated scattering waves for FSI

(AS NNFSI

Continuum spectrum with n-n FSI

Density of State

$$
\begin{aligned}
D_{n \mathrm{~s}}\left(\epsilon_{\mathrm{nn}}\right) & =\frac{\left|\hat{A}_{n \mathrm{~s}}(k)\right|^{2}}{k}(\text { for } n=1,2) ; \epsilon_{\mathrm{nn}}=\frac{\hbar^{2} k^{2}}{m_{\mathrm{N}}} \\
\hat{A}_{1 \mathrm{~s}}(k) & =\int_{0}^{\infty} d r r \psi_{1 \mathrm{~s}}(r) \phi_{k}(r)=2\left(\frac{1}{\sqrt{\pi} a^{3}}\right)^{1 / 2} k A_{1 \mathrm{~s}}(k) \\
\hat{A}_{2 \mathrm{~s}}(k) & =\int_{0}^{\infty} d r r \psi_{2 \mathrm{~s}}(r) \phi_{k}(r)=2 \sqrt{\frac{2}{3}}\left(\frac{1}{\sqrt{\pi} a^{3}}\right)^{1 / 2} k A_{2 \mathrm{~s}}(k)
\end{aligned}
$$

Expand $\mathcal{A} \Phi_{0}$ with correlated n-n scattering wave $\phi_{k}(r)$ $A(k)$'s are used instead of Fourier component

Correlation is taking into account for $2 \mathrm{n}-2 \mathrm{n}$ relative motion by using scattering length

Fit with direct component \& BG

Energy spectrum is expressed by the continuum from the direct decay and (small) experimental background except for four events at $0<E_{4 \mathrm{n}}<2 \mathrm{MeV}$ The Four events suggest a possible resonance at
0.83 ± 0.65 (stat.) ± 1.25 (sys.) MeV with width narrower than 2.6 MeV
(FWHM). [4.9o significance]
Integ. cross section $\theta_{\mathrm{cm}}<5.4 \mathrm{deg}$:
$3.8^{+2.9}{ }_{-1.8} \mathrm{nb}$

+ likelihood ratio test

$$
\chi_{\lambda}^{2}=-2 \ln [L(\boldsymbol{y} ; \boldsymbol{n}) / L(\boldsymbol{n} ; \boldsymbol{n})]
$$

Significance:

$$
s_{i}=\sqrt{2\left[y_{i}-n_{i}+n_{i} \ln \left(n_{i} / y_{i}\right)\right]}
$$

$n_{i}:$ num. of events in the i-th bin y_{i} : trial function in the i-th bin

+ Look Elsewhere Effect

Summary

- ${ }^{4} \mathrm{He}\left({ }^{8} \mathrm{He},{ }^{8} \mathrm{Be}\right) 4 \mathrm{n}$ has been measured at 190 A MeV at RIBFSHARAQ
- Missing mass spectrum with very few background
- Although statistics is low (27 evs), spectrum looks two components (continuum + peak)
- Continuum is consistent with direct breakup process from $(0 s)^{2}(0 p)^{2}$ wave packe \dagger
- Four events just above $4 n$ threshold is statistically beyond prediction of continuum + background (4.9 σ significance)
\rightarrow candidate of 4 n resonance

$$
\text { at } 0.83 \pm 0.65 \text { (stat.) } \pm 1.25 \text { (sys.) MeV; } \Gamma<2.6 \mathrm{MeV}
$$

- Constraint to nucleon forces : $n-n$ two body; $T=3 / 2$ threebody force; non-central; off-energy shell ...

