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Tetra-neutron 
•  Multi-neutron System 

– Neutron cluster (?) in fragmentation of 14Be 
PRC65, 044006 (2002) 

– NN, NNN, NNNN interactions 
•  Neutron-Neutron interaction 
•  T=3/2 NNN force 

-> 3-body force in neutron matter 
•  Ab initio type calculations 

– Multi-body resonances 
– Correlations in multi-fermion scattering / 

resonant (?) states 





8Be 8He 

4He→4n 

Tetra-neutron system produced by exothermic 
double-charge exchange reaction 

Almost recoil-less condition with 4He(8He,
8Be)4n reaction around 200 A MeV 
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Recoil-less 4n system via DCX 
using internal energy of 8He  

4n in breakup of 14Be : Marques et al. PRC 65 (2002) 044006 

S.C. Pieper et al., PRL 90, 252501 (2003) 

4He(8He,8Be)  
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Level diagrams  
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Experimental setup 

F3 
(tracker) 

F6 (MWDCs) 
mom. 
tagging 
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8He beam (8.4Tm) 
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2 MHz from 400 pnA of 18O 
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FIG. 1. (color line). Left: A schematic picture of the exper-
imental setup for downstream of F6. Right: The momentum
correlation between 8He beam (p8He) at F6 and 8Be ejectile
(p8Be) at S2 for the candidate events. The p8He = p8Be = 0%
corresponds to the central position of the focal plane. The
shaded diagonal line shows the energy threshold of the four-
neutron decay. The diagonal axis corresponds to energy of
tetra-neutron system, where E8Be is the energy of 8Be, E8He

is the energy of 8He and Q is Q-value of the reaction.

We used the double-charge exchange (DCX)
4He(8He,8Be) reaction at forward angles to popu-
late tetra-neutron state near the threshold. This
particular reaction is extremely efficient in producing
the tetra-neutron system at an almost recoil-less condi-
tion. The recoil-less condition is inevitable to populate
very weakly bound systems. The condition can be
uniquely fulfilled by the DCX reaction with positive
Q-value where the transferred energy is converted from
the large internal energy in the unstable 8He nucleus.
This feature makes the DCX (8He,8Be) reaction a quite
unique probe to the tetra-neutron system, especially at
a low excitation energies.

The experiment was carried out at the RI Beam Fac-
tory (RIBF) [21] at RIKEN using the SHARAQ spec-
trometer [22] with liquid He target system [23]. A pri-
mary beam of 18O of 230 MeV/u produced was bom-
barded onto a 20-mm-thick Be target at the focal plane
F0 of BigRIPS [24]. The secondary beam of 8He of
186 MeV/u was transported to a liquid He target with a
thickness of 136 mg/cm2 at SHARAQ-S0. The 8He beam
intensity was 2 × 106 counts/second with a bunch struc-
ture synchronizing the radio frequency of the cyclotrons
of 13.7 MHz. The purity of the 8He achieved 99.3%.

In order to obtain missing-mass spectrum of the
tetra-neutron system with about 1 MeV resolution, the
SHARAQ spectrometer was used at 0 degree to mea-
sure the momenta of two α particles, which are the de-
cay product of 8Be. The SHARAQ spectrometer was
designed for the high-resolution spectroscopy in com-
bined with a RI beam. The momentum distribution of
the secondary beam was about ±1% which is consider-
able larger than the resolution of the SHARAQ spec-
trometer. Therefore, we measured the momentum of
the beam particle on an event-by-event basis. A High-

Resolution-Achromatic transport [25] was employed at
the BigRIPS and High-Resolution-Beamline. The mo-
mentum of 8He was measured by Multi-Wire Drift Cham-
bers (MWDCs) [26] at BigRIPS-F6, which is the dis-
persive focal plane in BigRIPS. For the reaction prod-
ucts, the SHARAQ spectrometer was operated in Large-
Momentum-Acceptance mode to have a momentum ac-
ceptance of about ±2.5%, which covered momentum
range of ±0.74% for the two α particles and ±1% of the
beam. This ion optical transport satisfies effective solid
angle 4.3 msr for the ground state of 8Be and momen-
tum resolution, which gives about 1 MeV missing-mass
resolution. To cover the maximum size of the spread of
two α particles sufficiently and to obtain detection effi-
ciency as much as possible for two α particles with small
spread, Cathode-Readout Drift Chambers (CRDCs) were
used [27] at the S2, which is a final focal plane of the
SHARAQ spectrometer. Using CRDC, two particles can
be successfully identified for events which are separated
more than 5 mm in vertical and 10 mm in horizon-
tal direction, respectively. A schematic picture of the
experimental setup for downstream of F6 is shown in
Fig. 1 (Left).

Experimental advantage of the (8He,8Be) reaction with
the beam of 186 MeV/u by using the SHARAQ spectrom-
eter is a good signal-to-noise ratio. It can be achieved by
requiring two α particles detection in coincidence at the
final focal plane. A spread of two α particles in space
from the ground state of 8Be with the incident 8He beam
energy of 186 MeV/u is smaller than the acceptance of
the SHARAQ spectrometer. On the other hand, the ac-
ceptance for detecting the two α particles from the ex-
cited states of 8Be is about 1/100 times smaller than the
ground state.

Since cross section of DCX reaction was expected to be
small, good signal-to-noise ratio necessary for selection
of events in the data analysis. We selected events which
satisfy the conditions of 1) time-of-flight measurement
between FH10 and S2 plastic scintillator and energy loss
at S2 plastic scintillators, 2) rejection of events of multi-
particle in one-bunch, 3) identification of two α particles
at final focal plane in coincidence and 4) confirmation of
the hitting position of the target. Under high-rate condi-
tion of the secondary beam such as 2×106 counts/second,
the bunch of triggered particles of about 15% comprise
more than two particles (multi-particle). Events of multi-
particle in triggered bunch were excluded from the anal-
ysis of MWDC at F6. Right panel of Fig. 1 shows the
momentum correlation between 8He beam (p8He) and
8Be ejectile (p8Be) for the candidate events. The shaded
diagonal line corresponds to the threshold for the four-
neutron decay. A reasonable correlation of the deference
of an amount of events on the threshold was obtained.
A preliminary result is described in [27]. The missing
mass was calculated on an event-by-event basis from the
momentum of 8He at F6 and the center-of-mass momen-
tum of the two α particles at S2. Its overall resolution
was estimated to be 1.2 MeV (σ) by using ion-optical
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3

plastic scintillator at the target area was measured by
changing the magnetic field of the SHARAQ spectrom-
eter. The missing mass of the DCX reaction was then
calibrated from the 8Li peak position and the ratio of
magnetic field strengths measured with a NMR probe, af-
ter correction of difference of effective field lengths. The
systematic error due to the calibration was estimated to
be 1.25 MeV.

The missing mass of tetraneutron E4n was calculated
on an event-by-event basis from the momentum vectors
of 8He and the two observed α particles, where finite
scattering angles were taken into account. Here, E4n =
0 MeV corresponds to the threshold of four-neutron de-
cay. We obtained 27 events in the −25 < E4n < 65 MeV
energy region. The overall missing-mass resolution was
estimated to be 1.2 MeV (σ) using the ion-optical analy-
sis. The relative energy between the two observed α par-
ticles, Eαα, was also deduced for examining the states of
8Be. Figure 2 shows a scatter plot of E4n versus Eαα, to-
gether with the projected histogram for Eαα. The solid
(red) and dashed (blue) curves in Fig. 2 (a) represent
the response function for 8Be(0+) and 8Be(2+), respec-
tively, where the acceptance and the finite resolution in
angles and momenta are taken into account. The magni-
tude for 8Be(0+) is determined by fitting the histogram,
whereas that for 8Be(2+) is arbitrary for comparison of
the shapes. The acceptance of 8Be(2+) was estimated to
be 13% of that of 8Be(0+). The observed spectrum of
Eαα is statistically consistent with the response function
of 8Be(0+). In particular, the events in 0 < E4n < 2 MeV
are considered to be the contribution from 8Be(0+), while
the events with large Eαα in E4n > 8 MeV, for instance,
Eαα > 1.8 MeV, may be the possible contribution from
8Be(2+). In the following analysis, we firstly assume
8Be(0+) for simplicity and then discuss a possible contri-
bution from 8Be(2+) later.
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FIG. 2. (color online). A scatter plot of the missing mass of
tetraneutron versus the relative energy between two α parti-
cles, together with the projected histogram for Eαα. The solid
(red) and dashed (blue) curves in (a) represent the response
functions for 8Be(0+) and 8Be(2+), respectively. The magni-
tudes of the response functions are described in the text.

Figure 3 (a) shows the obtained missing-mass spectrum
of the tetraneutron system; spectrometer acceptance was
constant in the region of the spectrum.

The yield of the background in the missing-mass spec-
trum was then estimated with multiparticles in a trig-
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FIG. 3. (color online). (a) Missing-mass spectrum of the
tetraneutron system. The solid (red) curve represents the
sum of the direct decay of correlated two-neutron pairs and
estimated background. The dashed (blue) curve represents
the estimated background multiplied by a factor of 10. The
schematic of the decay process is discussed in the text. (b)
Evaluation of the goodness-of-fit for each bin using the likeli-
hood ratio test. The si were defined in Eq. (3).

gered bunch considered to be a possible background
source. A large fraction of these background events were
rejected using the MWDC at F6. However, because the
detection efficiency of the MWDC was not 100%, the
multiparticle events could produce the background if one
of the particles was detected while the others were not.
Furthermore, the multiparticle events in the same cell of
the MWDC were not identified as two particles. Other
possible background sources such as the events where
particles were misidentified and the events originating in
window foils of detectors are estimated to be negligibly
small. The number of the integrated background events
in the spectrum was estimated to be 2.2 ± 1.0. The
shape of the background was reconstructed by selecting
two independent single-α events identified at S2 at ran-
dom, which is consistent with the missing-mass spectrum
of two α particles for the events identified as multipar-
ticles in a triggered bunch. The dashed line (blue) in
Fig. 3 (a) represents the estimated background magni-
fied by 10 times for visualization.

Two components are clearly observed in this spectrum
in spite of the relatively low statistics. One is the con-
tinuum in the E4n > 2 MeV region, whereas the other is
the peak at the low-energy region 0 < E4n < 2 MeV. To
interpret this spectrum, we assume two different states.
One is the direct decay with the final-state interaction be-
tween the two correlated neutron pairs. This direct decay

Acceptance	for	8Be(2+)	was	13	%	of	that	for	8Be(0+)	
A	few	events	could	be	from	8Be(2+). 
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analysis.
For the calibration of the energy of tetra-neutron sys-

tem E4n, the 1H(8He,8Li(1+))n reaction from the plastic
scintillator around target area was measured by changing
the magnetic field of the SHARAQ spectrometer. From
the peak position of the 8Li and the ratio of the field
integrals of the magnets, the missing mass of the DCX
reaction was calibrated. The systematic error due to the
calibration was estimated to be 1.25 MeV.

We obtained 27 events produced by the 4He(8He,8Be)
reaction in the energy −25 < E4n < 65 MeV region.
Figure 2 (a) shows the obtained missing-mass spectrum
of tetra-neutron system. The energy of E4n = 0 MeV
corresponds to the threshold of four-neutron decay. The
acceptance of the spectrometer was constant in the region
of the spectrum.
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FIG. 2. (color line). (a) The missing-mass spectrum of the
tetra-neutron system. The solid (red) line represents the
curve, which is sum of the result of the calculation and the
estimated background (see text). The dashed (blue) line rep-
resents the curve, which is ten times of the estimated back-
ground. The schematic picture of the decay mode is discussed
in text. (b) Evaluation of the goodness-of-fit for each bin us-
ing likelihood ratio test. The si were defined in Eq. (3).

We estimated the shape and yields of a background in
the missing-mass spectrum. The multi-particle in a trig-
gered bunch was considered a possible source of a back-
ground. A large fraction of these events were rejected
using the MWDC at F6. However, since the detection ef-
ficiency of the MWDC was limited, multi-particle events
contribute to the background in cases where one of the
particles is detected while the other was not. Further-
more, events with multi-particle in same space separated
from wires of the MWDC were not identified as two par-

ticles. Another possible sources of the background are es-
timated to be negligible, which are, for instance, events
misidentified to α particle, events produced by the foil
of the detectors. The magnitude was estimated to be
2.2 ± 1.0 events in the spectrum by using the measured
magnitudes of the detection efficiency of MWDCs. The
shape of the background was reconstructed by using a
spectrum of single-alpha events identified at S2, which
is consistent with the missing-mass spectrum of two al-
phas for the events identified as the multi-particle in a
triggered bunch. The dashed line (blue) in Fig. 2 (a)
represents the estimated background magnified by 10 for
visualization purpose.

While the statistics is small, there seems to be two
components in this spectrum. One is the continuum in
the E4n > 2 MeV region. The other is the strength at
the low energy region 0 < E4n < 2 MeV. In order to
interpret this spectrum, we assume two different decay
modes of the populated tetra-neutrons. One is the direct
decay with the final-state interaction between the two
correlated neutron pairs. This direct decay makes a con-
tinuum in the spectrum. The other is possible resonant
or bound state of the tetra-neutron system.

The shape of the continuum of the tetra-neutron sys-
tem produced by reactions was discussed by Grigorenko
et al [28]. In their paper, energy spectrum is calculated
assuming that the wave packet of the tetra-neutron sys-
tem just after the reaction is considered to be the source
evolving by the four-body Hamiltonian. For the case of
the knockout reaction of 8He, the peak position of the
continuum is predicted to be about 12 MeV (4 MeV) for
the source size of 5.6 fm (8.9 fm). On the other hand, for
the pion DCX reaction on the 4He, the peak position is
expected to be 30–40 MeV because of the compact source
from the tightly bound 4He.

We applied this idea to the DCX reaction of
4He(8He,8Be). The calculation allows to incorporate the
initial structure of target nuclei, reaction mechanism,
few-body effects and final-state interaction in studies
of unbound states for analyzing the present data. The
initial-state of the wave function of 4He was assumed to
be Φ[(0s)4]. After the DCX reaction, the four-neutron
wave packet with angular the momentum J = 0 is as-
sumed to be Φ[(0s)2(0p)2]. Here, we consider the double-
dipole nature in the DCX reaction due to the Pauli block-
ing effect. The final-state interaction between the two
neutrons in the 1S0 neutron pair (di-neutron) and be-
tween two di-neutrons are taken into account.

In the result of the calculation, the peak position
of the continuum of about 30 MeV is well reproduced
for the data. The spectral shape near the threshold
(E4n < 4 MeV) is approximated by Eα (α ∼ 3) similar
to the index α = 7/2 for the four-body phase space. It is
noted that the calculation without a long-lived resonance
predicts very small contribution near the threshold.

In order to demonstrate the significance of the yields
near the threshold, we fitted the experimental data with a
trial function assuming neither resonant state nor bound
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2, respectively. The three cases are transformed to (r2
12 − r2), r⃗× r⃗12, and (r2

12Y2(r̂12)− r2Y2(r̂)), respectively,
where r⃗12 = r⃗1 − r⃗2 and r⃗ = (⃗r1 + r⃗2)/2 − (⃗r3 + r⃗4)/2.

For JD = 0 case, the wave packet Φ0 after the DCX reaction is proportional to:
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where ϵ12 = E sin2 α cos2 β, ϵ34 = E sin2 α sin2 β, and X = E/ϵa.
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⎡
⎢⎢⎢⎢⎢⎣−
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a2 −
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2a2 −
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⎤
⎥⎥⎥⎥⎥⎦ , (13)

where the projection operator P acts so as to ⟨Ψ|Φs
0⟩ = 0. It is noted that the wave packet Φs

0 is proportional
to ψ1s(r)ψ2s(r12)ψ1s(r34)− 1

2ψ2s(r)ψ1s(r12)ψ1s(r34), where ψ’s denote the Harmonic Oscillator wave functions
with the corresponding oscillator constants for the radial coordinates.

1.3 Anti-symmetrization

We consider anti-symmetrization of eq. (13), where 1S0 states in the spin space are assumed for the 1-2 and
the 3-4 pair:

Φ0 (1, 2; 3, 4) = Φs
0
(
r⃗12−34, r⃗12, r⃗34

) × χ (1, 2) χ (3, 4) (14)

χ (i, j) =
1√
2

(↑ (i) ↓ ( j)− ↓ (i) ↑ ( j)) . (15)

This wave packet has no symmetry for the permutation across the 1-2 and 3-4 pairs. Considering the spin-
part, total anti-symmetrized wave packet is expressed as

AΦ0 ∝ Φ0 (1, 2; 3, 4)+Φ0 (3, 4; 1, 2)+Φ0 (1, 3; 4, 2)+Φ0 (4, 2; 1, 3)+Φ0 (1, 4; 2, 3)+Φ0 (2, 3; 1, 4) . (16)

By using the relations for integration of spin parts such as:

⟨χ (1, 2) χ (3, 4) |χ (1, 3) χ (4, 2)⟩ = ⟨χ (1, 2) χ (3, 4) |χ (1, 4) χ (2, 3)⟩ = ⟨χ (1, 3) χ (4, 2) |χ (1, 4) χ (2, 3)⟩ = −1
2
,

(17)

the spacial four-body density of the the anti-symmetrized wave packet after integration of spin part may be
expressed as:

ρ0 ∝
[
Φw

0 (12; 34)
]2
+

[
Φw

0 (13; 42)
]2
+

[
Φw

0 (14; 23)
]2

−Φw
0 (13; 42)Φw

0 (14; 23) − Φw
0 (14; 23)Φw

0 (12; 34) − Φw
0 (12; 34)Φw

0 (13; 42) , (18)

where
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(
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)
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0

(
r⃗i j−kl, r⃗kl, r⃗i j

)
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(
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)
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(
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)
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∝
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After coordinate transformation, all the Φw
0 ’s are expressed in the coordinate set of {⃗r (= r⃗12−34), r⃗12, r⃗34}:

Φw
0 (13; 42) ∝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

r2

(
a/
√

2
)2 −
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⎟⎟⎟⎟⎟⎟⎟⎟⎠ −
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a2 −
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⎤
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∝ ψ2s (r)ψ1s (r12)ψ1s (r34) −
√

2 ψ1s (r)
[
ψ1p

(
r⃗12

) ⊗ ψ1p
(
r⃗34

)]
00

(23)

where the projection operator P acts so as to ⟨Ψ|Φs
0⟩ = 0. It is noted that the wave packet Φs

0 is propor-
tional to ψ1s(rα)ψ2s(r12)ψ1s(r34)− 1

2ψ2s(rα)ψ1s(r12)ψ1s(r34), where ψ’s denote the Harmonic Oscillator wave
functions with the corresponding oscillator constants for the radial coordinates.

1.3 Anti-symmetrization

We consider anti-symmetrization of eq. (11), where the 1-2 and the 3-4 pair is assumed to be 1S0 states:

Φ0 (1, 2; 3, 4) = Φs
0
(
r⃗12−34, r⃗12, r⃗34

) · χ (1, 2) χ (3, 4) (12)

χ (i, j) =
1√
2

(↑ (i) ↓ ( j)− ↓ (i) ↑ ( j)) . (13)

This wave packet has no symmetry for the permutation across the 1-2 and 3-4 pairs. Considering the spin-
part, total anti-symmetrized wave packet is expressed as

AΦ0 ∝ Φ0 (1, 2; 3, 4)+Φ0 (3, 4; 1, 2)+Φ0 (1, 3; 4, 2)+Φ0 (4, 2; 1, 3)+Φ0 (1, 4; 2, 3)+Φ0 (2, 3; 1, 4) . (14)

By using the relations for integration of spin parts such as:

⟨χ (1, 2) χ (3, 4) |χ (1, 3) χ (4, 2)⟩ = ⟨χ (1, 2) χ (3, 4) |χ (1, 4) χ (2, 3)⟩ = ⟨χ (1, 3) χ (4, 2) |χ (1, 4) χ (2, 3)⟩ = −1
2
,

(15)

the spacial four-body density of the the anti-symmetrized wave packet after integration of spin part is ex-
pressed as:

ρ0 ∝
[
Φw

0 (12; 34)
]2
+

[
Φw

0 (13; 42)
]2
+

[
Φw

0 (14; 23)
]2

−Φw
0 (13; 42)Φw

0 (14; 23) − Φw
0 (14; 23)Φw

0 (12; 34) − Φw
0 (12; 34)Φw

0 (13; 42) , (16)

where

Φw
0 (i j; kl) = Φs

0

(
r⃗i j−kl, r⃗i j, r⃗kl

)
+ Φs

0

(
r⃗i j−kl, r⃗kl, r⃗i j

)
(17)

∝ ψ1s
(
ri j−kl

)
ψ2s

(
ri j

)
ψ1s (rkl) + ψ1s

(
ri j−kl

)
ψ1s

(
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)
ψ2s (rkl) − ψ2s

(
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)
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(
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)
ψ1s (rkl)

(18)

∝
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⎢⎢⎢⎢⎢⎢⎢⎢⎣
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3
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⎜⎜⎜⎜⎜⎜⎜⎜⎝
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√

2
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3
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦ exp
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⎤
⎥⎥⎥⎥⎥⎥⎦ (19)

After coordinate transformation, all the Φw
0 ’s are expressed in the coordinate set of {⃗rα (= r⃗12−34), r⃗12, r⃗34}:

Φw
0 (13; 42) ∝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
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√

2
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2
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⎟⎟⎟⎟⎟⎟⎟⎟⎠ −
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦ exp

⎡
⎢⎢⎢⎢⎢⎣−
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α

a2 −
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12

2a2 −
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⎤
⎥⎥⎥⎥⎥⎦ (20)

∝ ψ2s (rα)ψ1s (r12)ψ1s (r34) −
√

2 ψ1s (rα)
[
ψ1p

(
r⃗12

) ⊗ ψ1p
(
r⃗34

)]
00

(21)

Φw
0 (14; 23) ∝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

r2
α(
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√

2
)2 −

3
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ +

2r⃗12 · r⃗34
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦ exp

⎡
⎢⎢⎢⎢⎢⎣−
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α

a2 −
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2a2 −
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34
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⎤
⎥⎥⎥⎥⎥⎦ (22)

∝ ψ2s (rα)ψ1s (r12)ψ1s (r34) +
√

2 ψ1s (rα)
[
ψ1p

(
r⃗12

) ⊗ ψ1p
(
r⃗34

)]
00

(23)

By using these relations the four-body density is expressed as:

ρ0
(
r⃗α, r⃗12, r⃗34

) ∝
⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝
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a2 +
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a2 −
4r2
α
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⎞
⎟⎟⎟⎟⎟⎠

2

+ 3
(
2r⃗12 · r⃗34

a2

)2
⎤
⎥⎥⎥⎥⎥⎥⎦ exp

⎡
⎢⎢⎢⎢⎢⎣−

2r2
α

a2 −
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12

a2 −
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34
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⎤
⎥⎥⎥⎥⎥⎦ , (24)

2

where the projection operator P acts so as to ⟨Ψ|Φs
0⟩ = 0. It is noted that the wave packet Φs

0 is propor-
tional to ψ1s(rα)ψ2s(r12)ψ1s(r34)− 1

2ψ2s(rα)ψ1s(r12)ψ1s(r34), where ψ’s denote the Harmonic Oscillator wave
functions with the corresponding oscillator constants for the radial coordinates.

1.3 Anti-symmetrization

We consider anti-symmetrization of eq. (11), where the 1-2 and the 3-4 pair is assumed to be 1S0 states:

Φ0 (1, 2; 3, 4) = Φs
0
(
r⃗12−34, r⃗12, r⃗34

) · χ (1, 2) χ (3, 4) (12)

χ (i, j) =
1√
2

(↑ (i) ↓ ( j)− ↓ (i) ↑ ( j)) . (13)

This wave packet has no symmetry for the permutation across the 1-2 and 3-4 pairs. Considering the spin-
part, total anti-symmetrized wave packet is expressed as

AΦ0 ∝ Φ0 (1, 2; 3, 4)+Φ0 (3, 4; 1, 2)+Φ0 (1, 3; 4, 2)+Φ0 (4, 2; 1, 3)+Φ0 (1, 4; 2, 3)+Φ0 (2, 3; 1, 4) . (14)

By using the relations for integration of spin parts such as:

⟨χ (1, 2) χ (3, 4) |χ (1, 3) χ (4, 2)⟩ = ⟨χ (1, 2) χ (3, 4) |χ (1, 4) χ (2, 3)⟩ = ⟨χ (1, 3) χ (4, 2) |χ (1, 4) χ (2, 3)⟩ = −1
2
,

(15)

the spacial four-body density of the the anti-symmetrized wave packet after integration of spin part is ex-
pressed as:

ρ0 ∝
[
Φw

0 (12; 34)
]2
+

[
Φw

0 (13; 42)
]2
+

[
Φw

0 (14; 23)
]2

−Φw
0 (13; 42)Φw

0 (14; 23) − Φw
0 (14; 23)Φw

0 (12; 34) − Φw
0 (12; 34)Φw

0 (13; 42) , (16)

where

Φw
0 (i j; kl) = Φs

0

(
r⃗i j−kl, r⃗i j, r⃗kl

)
+ Φs

0

(
r⃗i j−kl, r⃗kl, r⃗i j

)
(17)

∝ ψ1s
(
ri j−kl

)
ψ2s

(
ri j

)
ψ1s (rkl) + ψ1s

(
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)
ψ1s

(
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)
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(
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)
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)
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∝
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⎢⎢⎢⎢⎢⎢⎢⎢⎣
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2
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After coordinate transformation, all the Φw
0 ’s are expressed in the coordinate set of {⃗rα (= r⃗12−34), r⃗12, r⃗34}:

Φw
0 (13; 42) ∝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎡
⎢⎢⎢⎢⎢⎣−

r2
α

a2 −
r2

12

2a2 −
r2

34

2a2

⎤
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∝ ψ2s (rα)ψ1s (r12)ψ1s (r34) −
√

2 ψ1s (rα)
[
ψ1p

(
r⃗12

) ⊗ ψ1p
(
r⃗34

)]
00

(21)

Φw
0 (14; 23) ∝
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⎤
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⎤
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∝ ψ2s (rα)ψ1s (r12)ψ1s (r34) +
√

2 ψ1s (rα)
[
ψ1p

(
r⃗12

) ⊗ ψ1p
(
r⃗34

)]
00

(23)

By using these relations the four-body density is expressed as:

ρ0
(
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) ∝
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2

where the projection operator P acts so as to ⟨Ψ|Φs
0⟩ = 0. It is noted that the wave packet Φs

0 is propor-
tional to ψ1s(rα)ψ2s(r12)ψ1s(r34)− 1

2ψ2s(rα)ψ1s(r12)ψ1s(r34), where ψ’s denote the Harmonic Oscillator wave
functions with the corresponding oscillator constants for the radial coordinates.

1.3 Anti-symmetrization

We consider anti-symmetrization of eq. (11), where the 1-2 and the 3-4 pair is assumed to be 1S0 states:

Φ0 (1, 2; 3, 4) = Φs
0
(
r⃗12−34, r⃗12, r⃗34

) · χ (1, 2) χ (3, 4) (12)

χ (i, j) =
1√
2

(↑ (i) ↓ ( j)− ↓ (i) ↑ ( j)) . (13)

This wave packet has no symmetry for the permutation across the 1-2 and 3-4 pairs. Considering the spin-
part, total anti-symmetrized wave packet is expressed as

AΦ0 ∝ Φ0 (1, 2; 3, 4)+Φ0 (3, 4; 1, 2)+Φ0 (1, 3; 4, 2)+Φ0 (4, 2; 1, 3)+Φ0 (1, 4; 2, 3)+Φ0 (2, 3; 1, 4) . (14)

By using the relations for integration of spin parts such as:

⟨χ (1, 2) χ (3, 4) |χ (1, 3) χ (4, 2)⟩ = ⟨χ (1, 2) χ (3, 4) |χ (1, 4) χ (2, 3)⟩ = ⟨χ (1, 3) χ (4, 2) |χ (1, 4) χ (2, 3)⟩ = −1
2
,

(15)

the spacial four-body density of the the anti-symmetrized wave packet after integration of spin part is ex-
pressed as:
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[
Φw

0 (12; 34)
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where
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After coordinate transformation, all the Φw
0 ’s are expressed in the coordinate set of {⃗rα (= r⃗12−34), r⃗12, r⃗34}:

Φw
0 (13; 42) ∝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

r2
α(

a/
√

2
)2 −

3
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ −

2r⃗12 · r⃗34

a2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦ exp

⎡
⎢⎢⎢⎢⎢⎣−

r2
α

a2 −
r2

12

2a2 −
r2

34

2a2

⎤
⎥⎥⎥⎥⎥⎦ (20)

∝ ψ2s (rα)ψ1s (r12)ψ1s (r34) −
√

2 ψ1s (rα)
[
ψ1p

(
r⃗12

) ⊗ ψ1p
(
r⃗34

)]
00

(21)

Φw
0 (14; 23) ∝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

r2
α(

a/
√

2
)2 −

3
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ +

2r⃗12 · r⃗34

a2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦ exp

⎡
⎢⎢⎢⎢⎢⎣−

r2
α

a2 −
r2

12

2a2 −
r2

34

2a2

⎤
⎥⎥⎥⎥⎥⎦ (22)

∝ ψ2s (rα)ψ1s (r12)ψ1s (r34) +
√

2 ψ1s (rα)
[
ψ1p

(
r⃗12

) ⊗ ψ1p
(
r⃗34

)]
00

(23)

By using these relations the four-body density is expressed as:

ρ0
(
r⃗α, r⃗12, r⃗34

) ∝
⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝

r2
12

a2 +
r2

34

a2 −
4r2
α

a2

⎞
⎟⎟⎟⎟⎟⎠

2

+ 3
(
2r⃗12 · r⃗34

a2

)2
⎤
⎥⎥⎥⎥⎥⎥⎦ exp

⎡
⎢⎢⎢⎢⎢⎣−

2r2
α

a2 −
r2

12

a2 −
r2

34

a2

⎤
⎥⎥⎥⎥⎥⎦ , (24)

2

where the projection operator P acts so as to ⟨Ψ|Φs
0⟩ = 0. It is noted that the wave packet Φs

0 is propor-
tional to ψ1s(rα)ψ2s(r12)ψ1s(r34)− 1

2ψ2s(rα)ψ1s(r12)ψ1s(r34), where ψ’s denote the Harmonic Oscillator wave
functions with the corresponding oscillator constants for the radial coordinates.

1.3 Anti-symmetrization

We consider anti-symmetrization of eq. (11), where the 1-2 and the 3-4 pair is assumed to be 1S0 states:

Φ0 (1, 2; 3, 4) = Φs
0
(
r⃗12−34, r⃗12, r⃗34

) · χ (1, 2) χ (3, 4) (12)

χ (i, j) =
1√
2

(↑ (i) ↓ ( j)− ↓ (i) ↑ ( j)) . (13)

This wave packet has no symmetry for the permutation across the 1-2 and 3-4 pairs. Considering the spin-
part, total anti-symmetrized wave packet is expressed as

AΦ0 ∝ Φ0 (1, 2; 3, 4)+Φ0 (3, 4; 1, 2)+Φ0 (1, 3; 4, 2)+Φ0 (4, 2; 1, 3)+Φ0 (1, 4; 2, 3)+Φ0 (2, 3; 1, 4) . (14)

By using the relations for integration of spin parts such as:

⟨χ (1, 2) χ (3, 4) |χ (1, 3) χ (4, 2)⟩ = ⟨χ (1, 2) χ (3, 4) |χ (1, 4) χ (2, 3)⟩ = ⟨χ (1, 3) χ (4, 2) |χ (1, 4) χ (2, 3)⟩ = −1
2
,

(15)

the spacial four-body density of the the anti-symmetrized wave packet after integration of spin part is ex-
pressed as:

ρ0 ∝
[
Φw

0 (12; 34)
]2
+

[
Φw

0 (13; 42)
]2
+

[
Φw

0 (14; 23)
]2

−Φw
0 (13; 42)Φw

0 (14; 23) − Φw
0 (14; 23)Φw

0 (12; 34) − Φw
0 (12; 34)Φw

0 (13; 42) , (16)

where

Φw
0 (i j; kl) = Φs

0

(
r⃗i j−kl, r⃗i j, r⃗kl

)
+ Φs

0

(
r⃗i j−kl, r⃗kl, r⃗i j

)
(17)

∝ ψ1s
(
ri j−kl

)
ψ2s

(
ri j

)
ψ1s (rkl) + ψ1s

(
ri j−kl

)
ψ1s

(
ri j

)
ψ2s (rkl) − ψ2s

(
ri j−kl

)
ψ1s

(
ri j

)
ψ1s (rkl)

(18)

∝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎝

r2
i j

a2 −
3
2

⎞
⎟⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝

r2
kl

a2 −
3
2

⎞
⎟⎟⎟⎟⎟⎠ −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

r2
i j−kl

(
a/
√

2
)2 −

3
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦ exp

⎡
⎢⎢⎢⎢⎢⎢⎣−

r2
i j−kl

a2 −
r2

i j

2a2 −
r2

kl

2a2

⎤
⎥⎥⎥⎥⎥⎥⎦ (19)

After coordinate transformation, all the Φw
0 ’s are expressed in the coordinate set of {⃗rα (= r⃗12−34), r⃗12, r⃗34}:

Φw
0 (13; 42) ∝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

r2
α(

a/
√

2
)2 −

3
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ −

2r⃗12 · r⃗34

a2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦ exp

⎡
⎢⎢⎢⎢⎢⎣−

r2
α

a2 −
r2

12

2a2 −
r2

34

2a2

⎤
⎥⎥⎥⎥⎥⎦ (20)

∝ ψ2s (rα)ψ1s (r12)ψ1s (r34) −
√

2 ψ1s (rα)
[
ψ1p

(
r⃗12

) ⊗ ψ1p
(
r⃗34

)]
00

(21)

Φw
0 (14; 23) ∝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

r2
α(

a/
√

2
)2 −

3
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ +

2r⃗12 · r⃗34

a2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦ exp

⎡
⎢⎢⎢⎢⎢⎣−

r2
α

a2 −
r2

12

2a2 −
r2

34

2a2

⎤
⎥⎥⎥⎥⎥⎦ (22)

∝ ψ2s (rα)ψ1s (r12)ψ1s (r34) +
√

2 ψ1s (rα)
[
ψ1p

(
r⃗12

) ⊗ ψ1p
(
r⃗34

)]
00

(23)

By using these relations the four-body density is expressed as:

ρ0
(
r⃗α, r⃗12, r⃗34

) ∝
⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝

r2
12

a2 +
r2

34

a2 −
4r2
α

a2

⎞
⎟⎟⎟⎟⎟⎠

2

+ 3
(
2r⃗12 · r⃗34

a2

)2
⎤
⎥⎥⎥⎥⎥⎥⎦ exp

⎡
⎢⎢⎢⎢⎢⎣−

2r2
α

a2 −
r2

12

a2 −
r2

34

a2

⎤
⎥⎥⎥⎥⎥⎦ , (24)

2

where the projection operator P acts so as to ⟨Ψ|Φs
0⟩ = 0. It is noted that the wave packet Φs

0 is propor-
tional to ψ1s(rα)ψ2s(r12)ψ1s(r34)− 1

2ψ2s(rα)ψ1s(r12)ψ1s(r34), where ψ’s denote the Harmonic Oscillator wave
functions with the corresponding oscillator constants for the radial coordinates.

1.3 Anti-symmetrization

We consider anti-symmetrization of eq. (11), where the 1-2 and the 3-4 pair is assumed to be 1S0 states:

Φ0 (1, 2; 3, 4) = Φs
0
(
r⃗12−34, r⃗12, r⃗34

) · χ (1, 2) χ (3, 4) (12)

χ (i, j) =
1√
2

(↑ (i) ↓ ( j)− ↓ (i) ↑ ( j)) . (13)

This wave packet has no symmetry for the permutation across the 1-2 and 3-4 pairs. Considering the spin-
part, total anti-symmetrized wave packet is expressed as

AΦ0 ∝ Φ0 (1, 2; 3, 4)+Φ0 (3, 4; 1, 2)+Φ0 (1, 3; 4, 2)+Φ0 (4, 2; 1, 3)+Φ0 (1, 4; 2, 3)+Φ0 (2, 3; 1, 4) . (14)

By using the relations for integration of spin parts such as:

⟨χ (1, 2) χ (3, 4) |χ (1, 3) χ (4, 2)⟩ = ⟨χ (1, 2) χ (3, 4) |χ (1, 4) χ (2, 3)⟩ = ⟨χ (1, 3) χ (4, 2) |χ (1, 4) χ (2, 3)⟩ = −1
2
,

(15)

the spacial four-body density of the the anti-symmetrized wave packet after integration of spin part is ex-
pressed as:

ρ0 ∝
[
Φw

0 (12; 34)
]2
+

[
Φw

0 (13; 42)
]2
+

[
Φw

0 (14; 23)
]2

−Φw
0 (13; 42)Φw

0 (14; 23) − Φw
0 (14; 23)Φw

0 (12; 34) − Φw
0 (12; 34)Φw

0 (13; 42) , (16)

where

Φw
0 (i j; kl) = Φs

0

(
r⃗i j−kl, r⃗i j, r⃗kl

)
+ Φs

0

(
r⃗i j−kl, r⃗kl, r⃗i j

)
(17)

∝ ψ1s
(
ri j−kl

)
ψ2s

(
ri j

)
ψ1s (rkl) + ψ1s

(
ri j−kl

)
ψ1s

(
ri j

)
ψ2s (rkl) − ψ2s

(
ri j−kl

)
ψ1s

(
ri j

)
ψ1s (rkl)

(18)

∝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎝

r2
i j

a2 −
3
2

⎞
⎟⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝

r2
kl

a2 −
3
2

⎞
⎟⎟⎟⎟⎟⎠ −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

r2
i j−kl

(
a/
√

2
)2 −

3
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦ exp

⎡
⎢⎢⎢⎢⎢⎢⎣−

r2
i j−kl

a2 −
r2

i j

2a2 −
r2

kl

2a2

⎤
⎥⎥⎥⎥⎥⎥⎦ (19)

After coordinate transformation, all the Φw
0 ’s are expressed in the coordinate set of {⃗rα (= r⃗12−34), r⃗12, r⃗34}:

Φw
0 (13; 42) ∝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

r2
α(

a/
√

2
)2 −

3
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ −

2r⃗12 · r⃗34

a2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦ exp

⎡
⎢⎢⎢⎢⎢⎣−

r2
α

a2 −
r2

12

2a2 −
r2

34

2a2

⎤
⎥⎥⎥⎥⎥⎦ (20)

∝ ψ2s (rα)ψ1s (r12)ψ1s (r34) −
√

2 ψ1s (rα)
[
ψ1p

(
r⃗12

) ⊗ ψ1p
(
r⃗34

)]
00

(21)

Φw
0 (14; 23) ∝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

r2
α(

a/
√

2
)2 −

3
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ +

2r⃗12 · r⃗34

a2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦ exp

⎡
⎢⎢⎢⎢⎢⎣−

r2
α

a2 −
r2

12

2a2 −
r2

34

2a2

⎤
⎥⎥⎥⎥⎥⎦ (22)

∝ ψ2s (rα)ψ1s (r12)ψ1s (r34) +
√

2 ψ1s (rα)
[
ψ1p

(
r⃗12

) ⊗ ψ1p
(
r⃗34

)]
00

(23)

By using these relations the four-body density is expressed as:

ρ0
(
r⃗α, r⃗12, r⃗34

) ∝
⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝

r2
12

a2 +
r2

34

a2 −
4r2
α

a2

⎞
⎟⎟⎟⎟⎟⎠

2

+ 3
(
2r⃗12 · r⃗34

a2

)2
⎤
⎥⎥⎥⎥⎥⎥⎦ exp

⎡
⎢⎢⎢⎢⎢⎣−

2r2
α

a2 −
r2

12

a2 −
r2

34

a2

⎤
⎥⎥⎥⎥⎥⎦ , (24)
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1 Note on four-nucleon system

Energy spectrum for direct decay of the tetra-neutron system populated by the double charge exchange
(DCX) reaction with a small momentum transfer, 4He→4n, is examined along the idea of ref. [1].

1.1 Wave function of 4He

Wave function with the (0s)4 configuration for 4He without the center-of-mass motion are expressed as:

Ψ
(
r⃗1, r⃗2, r⃗3, r⃗4

) ∝ exp

⎡
⎢⎢⎢⎢⎢⎢⎢⎣−

1
4a2

4∑

i< j

(
r⃗i − r⃗ j

)2
⎤
⎥⎥⎥⎥⎥⎥⎥⎦ (1)

= exp
⎡
⎢⎢⎢⎢⎢⎣−

3
4a2

(
r⃗1 −

r⃗2 + r⃗3 + r⃗4

3

)2

− 2
3a2

(
r⃗2 −

r⃗3 + r⃗4

2

)2

− 1
2a2

(
r⃗3 − r⃗4

)2
⎤
⎥⎥⎥⎥⎥⎦ (2)

= exp
⎡
⎢⎢⎢⎢⎢⎣−

1
a2

(
r⃗1 + r⃗2

2
− r⃗3 + r⃗4

2

)2

− 1
2a2

(
r⃗1 − r⃗2

)2 − 1
2a2

(
r⃗3 − r⃗4

)2
⎤
⎥⎥⎥⎥⎥⎦ (3)

= exp

⎡
⎢⎢⎢⎢⎢⎢⎣−

r2
α + r2

β + r2
γ

a2

⎤
⎥⎥⎥⎥⎥⎥⎦ (4)

r⃗G =
r⃗1 + r⃗2 + r⃗3 + r⃗4

4
(5)

r⃗α =
r⃗1 + r⃗2

2
− r⃗3 + r⃗4

2
; r⃗β =

r⃗1 + r⃗3

2
− r⃗4 + r⃗2

2
; r⃗γ =

r⃗1 + r⃗4

2
− r⃗2 + r⃗3

2
(6)

ρ
(
r⃗
)
= ⟨Ψ|

4∑

i=1

δ3 (
r⃗ − (

r⃗i − r⃗G
)) |Ψ⟩ ∝ exp

[
− 8r2

3a2

]
= exp

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣−

r2

2
(√

3a/4
)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦ (7)

ρ̃
(
q⃗
) ∝ exp

[
−3a2q2

8

]
= exp

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
− q2

2
(
2/

(√
3a

)2
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

√〈
r2〉 =

3
4

a ;
√〈

q2〉 =
2
a
=

3

2
√〈

r2〉 (9)

(10)

It is noted that the charge root-mean-square radii of the proton and the alpha are 0.84 fm and 1.68 fm,
respectively, which leads to the matter rms

√〈
r2〉 of the alpha is 1.455 fm (a=1.94 fm).

1.2 Wave packet after DCX

The DCX operator acting on 4He is considered to be ((σ1τ1)(⃗r1 − r⃗G) ⊗ (σ2τ2)(⃗r2 − r⃗G)) because of double
(spin) dipole transition, where suffices 1 and 2 denote protons in the original 4He. The spacial part of the
product is classified to three cases: ((⃗r1− r⃗G) · (⃗r2− r⃗G)), ((⃗r1− r⃗G)× (⃗r2− r⃗G)), and [(⃗r1− r⃗G)⊗ (⃗r2− r⃗G)]rank2
corresponding to JD = 0, 1, and 2, respectively. The three cases are transformed to (r2

12 − r2
α), r⃗α × r⃗12, and

(r2
12Y2(r̂12) − r2

αY2(r̂α)), respectively, where r⃗12 = r⃗1 − r⃗2 and r⃗α = (⃗r1 + r⃗2)/2 − (⃗r3 + r⃗4)/2 = r⃗12−34.
For JD = 0 case, the wave packet Φ0 after the DCX reaction is proportional to:

Φs
0
(
r⃗, r⃗12, r⃗34

) ∝ P
[(

r2
12 − r2

α

)
Ψ
]
∝

⎡
⎢⎢⎢⎢⎣
⎛
⎜⎜⎜⎜⎝

r2
12

a2 −
3
2

⎞
⎟⎟⎟⎟⎠ −

(
r2
α

a2 −
3
4

)⎤⎥⎥⎥⎥⎦ exp
⎡
⎢⎢⎢⎢⎢⎣−

r2
α

a2 −
r2

12

2a2 −
r2

34

2a2

⎤
⎥⎥⎥⎥⎥⎦ , (11)

1

AΦ0(r12, r34, rα) ∼ 

Fourier Transform: AΦ0 (r12, r34, rα) → AΦ0 (k12, k34, k) 	 

or

ρ0
(
r⃗α, r⃗β, r⃗γ

)
∝

[(
r2
α − r2

β

)2
+

(
r2
α − r2

γ

)2
+

(
r2
β − r2

γ

)2
]

exp

⎡
⎢⎢⎢⎢⎢⎢⎢⎣−

2
(
r2
α + r2

β + r2
γ

)

a2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦ (25)

1.4 Energy distribution without final-state-interaction

Fourier transform of Φw
0 s are expressed such as

Φ̃w
0 (12; 34) ∝ ψ̃1s (k) ψ̃2s (k12) ψ̃1s (k34) + ψ̃1s (k) ψ̃1s (k12) ψ̃2s (k34) − ψ̃2s (k) ψ̃1s (k12) ψ̃1s (k34)

(26)

∝
[(

a2k2
12 −

3
2

)
+

(
a2k2

34 −
3
2

)
−

(
1
2

a2k2 − 3
2

)]
exp

⎡
⎢⎢⎢⎢⎢⎣−

a2k2

4
−

a2k2
12

2
−

a2k2
34

2

⎤
⎥⎥⎥⎥⎥⎦ (27)

=

(
ϵ12

ϵa
+
ϵ34

ϵa
− ϵ

ϵa
− 3

2

)
exp

(
− E

2ϵa

)
, (28)

where

ϵa =
!2

mNa2 = 11MeV, ϵ =
!2k2

2mN
, ϵ12 =

!2k2
12

mN
, ϵ34 =

!2k2
34

mN
, E = ϵ + ϵ12 + ϵ34 . (29)

The Fourier transform of the total anti-symmetrized wave packet AΦ0 consists of these terms. The proba-
bility density in the momentum space may be expressed as:
∣∣∣AΦ̃0

∣∣∣2 d3k d3k12 d3k34 ∝
{[
Φ̃w

0 (12; 34)
]2
+

[
Φ̃w

0 (13; 42)
]2
+

[
Φ̃w

0 (14; 23)
]2

−Φ̃w
0 (13; 42) Φ̃w

0 (14; 23) − Φ̃w
0 (14; 23) Φ̃w

0 (12; 34) − Φ̃w
0 (12; 34) Φ̃w

0 (13; 42)
}

× d3k d3k12 d3k34 (30)

The phase space for the total energy E is obtained by integration of eq. (30) with on-shell condition δ(E −
ϵ − ϵ12 − ϵ34):

∫ ∣∣∣AΦ̃0
∣∣∣2 d3k d3k12 d3k34 δ(E − ϵ − ϵ12 − ϵ34)

∝
∫

d3k d3k12 d3k34 δ(E − ϵ − ϵ12 − ϵ34)

×
{[
Φ̃w

0 (12; 34)
]2 − 1

2
Φ̃w

0 (12; 34)
(
Φ̃w

0 (13; 42) + Φ̃w
0 (14; 23)

)}
(31)

∝
∫

d3k d3k12 d3k34 δ(E − ϵ − ϵ12 − ϵ34) exp
[
−a2k2

2
− a2k2

12 − a2k2
34

]

×
(
a2k2

12 + a2k2
34 −

1
2

a2k2 − 3
2

) (
a2k2

12 + a2k2
34 − a2k2

)
(32)

Energy spectrum P0(E) without any final state interaction is evaluated by integrating eq. (32).

P0 (E) ∝ exp
(
− E
ϵa

) ∫
dϵ dϵ12 dϵ34

√
ϵ ϵ12 ϵ34

δ (E − ϵ − ϵ12 − ϵ34)
(
ϵ12 + ϵ34 − ϵ

ϵa
− 3

2

) (
ϵ12 + ϵ34 − 2ϵ

ϵa

)
(33)

∝ X9/2e−X
∫ π/2

0
dα

∫ π/2

0
dβ sin3 α sin2 2α sin2 2β

(
X

(
sin2 α − cos2 α

)
− 3

2

) (
sin2 α − 2 cos2 α

)
(34)

∝ X11/2 exp (−X) , (35)

3

or

ρ0
(
r⃗α, r⃗β, r⃗γ

)
∝

[(
r2
α − r2

β

)2
+

(
r2
α − r2

γ

)2
+

(
r2
β − r2

γ

)2
]

exp

⎡
⎢⎢⎢⎢⎢⎢⎢⎣−

2
(
r2
α + r2

β + r2
γ

)

a2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦ (25)

1.4 Energy distribution without final-state-interaction

Fourier transform of Φw
0 s are expressed such as

Φ̃w
0 (12; 34) ∝ ψ̃1s (k) ψ̃2s (k12) ψ̃1s (k34) + ψ̃1s (k) ψ̃1s (k12) ψ̃2s (k34) − ψ̃2s (k) ψ̃1s (k12) ψ̃1s (k34)

(26)

∝
[(

a2k2
12 −

3
2

)
+

(
a2k2

34 −
3
2

)
−

(
1
2

a2k2 − 3
2

)]
exp

⎡
⎢⎢⎢⎢⎢⎣−

a2k2

4
−

a2k2
12

2
−

a2k2
34

2

⎤
⎥⎥⎥⎥⎥⎦ (27)

=

(
ϵ12

ϵa
+
ϵ34

ϵa
− ϵ

ϵa
− 3

2

)
exp

(
− E

2ϵa

)
, (28)

where

ϵa =
!2

mNa2 = 11MeV, ϵ =
!2k2

2mN
, ϵ12 =

!2k2
12

mN
, ϵ34 =

!2k2
34

mN
, E = ϵ + ϵ12 + ϵ34 . (29)

The Fourier transform of the total anti-symmetrized wave packet AΦ0 consists of these terms. The proba-
bility density in the momentum space may be expressed as:
∣∣∣AΦ̃0

∣∣∣2 d3k d3k12 d3k34 ∝
{[
Φ̃w

0 (12; 34)
]2
+

[
Φ̃w

0 (13; 42)
]2
+

[
Φ̃w

0 (14; 23)
]2

−Φ̃w
0 (13; 42) Φ̃w

0 (14; 23) − Φ̃w
0 (14; 23) Φ̃w

0 (12; 34) − Φ̃w
0 (12; 34) Φ̃w

0 (13; 42)
}

× d3k d3k12 d3k34 (30)

The phase space for the total energy E is obtained by integration of eq. (30) with on-shell condition δ(E −
ϵ − ϵ12 − ϵ34):

∫ ∣∣∣AΦ̃0
∣∣∣2 d3k d3k12 d3k34 δ(E − ϵ − ϵ12 − ϵ34)

∝
∫

d3k d3k12 d3k34 δ(E − ϵ − ϵ12 − ϵ34)

×
{[
Φ̃w

0 (12; 34)
]2 − 1

2
Φ̃w

0 (12; 34)
(
Φ̃w

0 (13; 42) + Φ̃w
0 (14; 23)

)}
(31)

∝
∫

d3k d3k12 d3k34 δ(E − ϵ − ϵ12 − ϵ34) exp
[
−a2k2

2
− a2k2

12 − a2k2
34

]

×
(
a2k2

12 + a2k2
34 −

1
2

a2k2 − 3
2

) (
a2k2

12 + a2k2
34 − a2k2

)
(32)

Energy spectrum P0(E) without any final state interaction is evaluated by integrating eq. (32).

P0 (E) ∝ exp
(
− E
ϵa

) ∫
dϵ dϵ12 dϵ34

√
ϵ ϵ12 ϵ34

δ (E − ϵ − ϵ12 − ϵ34)
(
ϵ12 + ϵ34 − ϵ

ϵa
− 3

2

) (
ϵ12 + ϵ34 − 2ϵ

ϵa

)
(33)

∝ X9/2e−X
∫ π/2

0
dα

∫ π/2

0
dβ sin3 α sin2 2α sin2 2β

(
X

(
sin2 α − cos2 α

)
− 3

2

) (
sin2 α − 2 cos2 α

)
(34)

∝ X11/2 exp (−X) , (35)

3
where ϵ12 = E sin2 α cos2 β, ϵ34 = E sin2 α sin2 β, and X = E/ϵa.
Similar expressions of the wave packets for JD = 1 and 2 are expressed as (⃗r ≡ r⃗α):

Φ1
(
r⃗, r⃗12, r⃗34

) ∝ (
r⃗ × r⃗12

)
exp

⎡
⎢⎢⎢⎢⎢⎣−

r2

a2 −
r2

12

2a2 −
r2

34

2a2

⎤
⎥⎥⎥⎥⎥⎦ (36)

Φ2
(
r⃗, r⃗12, r⃗34

) ∝
(
r2

12Y2 (r̂12) − r2Y2 (r̂)
)

exp
⎡
⎢⎢⎢⎢⎢⎣−

r2

a2 −
r2

12

2a2 −
r2

34

2a2

⎤
⎥⎥⎥⎥⎥⎦ (37)

Φ̃1
(
k⃗, k⃗12, k⃗34

)
∝

(
k⃗ × k⃗12

)
exp

⎡
⎢⎢⎢⎢⎢⎣−

a2k2

4
−

a2k2
12

2
−

a2k2
34

2

⎤
⎥⎥⎥⎥⎥⎦ (38)

Φ̃2
(
k⃗, k⃗12, k⃗34

)
∝

(
k2

12Y2
(
k̂12

)
− 1

4
k2Y2

(
k̂
))

exp
⎡
⎢⎢⎢⎢⎢⎣−

a2k2

4
−

a2k2
12

2
−

a2k2
34

2

⎤
⎥⎥⎥⎥⎥⎦ (39)

Non-correlated energy spectra PJD(E) (JD = 1, 2) are also evaluated as

P1 (E) ∝
∫

dΩk dΩk12 dΩk34dϵ dϵ12 dϵ34
√
ϵ ϵ12 ϵ34 δ (E − ϵ − ϵ12 − ϵ34)

∣∣∣∣Φ̃1
(
k⃗, k⃗12, k⃗34

)∣∣∣∣
2

(40)

∝ exp
(
− E
ϵa

) ∫
dϵ dϵ12 dϵ34

√
ϵ ϵ12 ϵ34 δ (E − ϵ − ϵ12 − ϵ34) ϵϵ12 (41)

∝ X11/2 exp (−X) (42)

P2 (E) ∝
∫

dΩk dΩk12 dΩk34dϵ dϵ12 dϵ34
√
ϵ ϵ12 ϵ34 δ (E − ϵ − ϵ12 − ϵ34)

∣∣∣∣Φ̃2
(
k⃗, k⃗12, k⃗34

)∣∣∣∣
2

(43)

∝ exp
(
− E
ϵa

) ∫
dϵ dϵ12 dϵ34

√
ϵ ϵ12 ϵ34 δ (E − ϵ − ϵ12 − ϵ34)

(
ϵ2

12 +
1
4
ϵ2

)
(44)

∝ X11/2 exp (−X) . (45)

Here, because of homogeneous character in the power of k’s, anti-symmetrization for JD = 1, 2 makes no
change in the functional shape.

It is very interesting that all the spectral shapes are represented by the same function, X11/2 exp(−X),
which has a peak at X = 11/2, i.e. E ≃60 MeV.

1.5 Di-neutron correlation using effective range theory

The N-N correlation (s-wave) is represented by the phase shifts δ which is expressed by the effective range
theory[2, 3, 4]:

k cot δk = −
1
as
+

1
2

rek2 + · · · , (46)

where ϵ = (!k)2/(2µ) = (!k)2/mN. For the two neutron system, the scattering length as ! −18.6 fm and the
effective range re ! 2.75 fm†.

The wave function of the two neutron system φk(r) may be simulated as

φk(r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√
2
π

[
sin (kr + δk) − sin δk

((
1 − r

as

)
−

(
1 − R

as

)
sin (K0r)
sin (K0R)

)]
(r < R)

√
2
π

sin (kr + δk) (r > R)
, (47)

†The higher order term (k4, k6 and so on) may be necessary for higher momentum region.

4

or

ρ0
(
r⃗α, r⃗β, r⃗γ

)
∝

[(
r2
α − r2

β

)2
+

(
r2
α − r2

γ

)2
+

(
r2
β − r2

γ

)2
]

exp

⎡
⎢⎢⎢⎢⎢⎢⎢⎣−

2
(
r2
α + r2

β + r2
γ

)

a2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦ (25)

1.4 Energy distribution without final-state-interaction

Fourier transform of Φw
0 s are expressed such as

Φ̃w
0 (12; 34) ∝ ψ̃1s (k) ψ̃2s (k12) ψ̃1s (k34) + ψ̃1s (k) ψ̃1s (k12) ψ̃2s (k34) − ψ̃2s (k) ψ̃1s (k12) ψ̃1s (k34)

(26)

∝
[(

a2k2
12 −

3
2

)
+

(
a2k2

34 −
3
2

)
−

(
1
2

a2k2 − 3
2

)]
exp

⎡
⎢⎢⎢⎢⎢⎣−

a2k2

4
−

a2k2
12

2
−

a2k2
34

2

⎤
⎥⎥⎥⎥⎥⎦ (27)

=

(
ϵ12

ϵa
+
ϵ34

ϵa
− ϵ

ϵa
− 3

2

)
exp

(
− E

2ϵa

)
, (28)

where

ϵa =
!2

mNa2 = 11MeV, ϵ =
!2k2

2mN
, ϵ12 =

!2k2
12

mN
, ϵ34 =

!2k2
34

mN
, E = ϵ + ϵ12 + ϵ34 . (29)

The Fourier transform of the total anti-symmetrized wave packet AΦ0 consists of these terms. The proba-
bility density in the momentum space may be expressed as:
∣∣∣AΦ̃0

∣∣∣2 d3k d3k12 d3k34 ∝
{[
Φ̃w

0 (12; 34)
]2
+

[
Φ̃w

0 (13; 42)
]2
+

[
Φ̃w

0 (14; 23)
]2

−Φ̃w
0 (13; 42) Φ̃w

0 (14; 23) − Φ̃w
0 (14; 23) Φ̃w

0 (12; 34) − Φ̃w
0 (12; 34) Φ̃w

0 (13; 42)
}

× d3k d3k12 d3k34 (30)

The phase space for the total energy E is obtained by integration of eq. (30) with on-shell condition δ(E −
ϵ − ϵ12 − ϵ34):

∫ ∣∣∣AΦ̃0
∣∣∣2 d3k d3k12 d3k34 δ(E − ϵ − ϵ12 − ϵ34)

∝
∫

d3k d3k12 d3k34 δ(E − ϵ − ϵ12 − ϵ34)

×
{[
Φ̃w

0 (12; 34)
]2 − 1

2
Φ̃w

0 (12; 34)
(
Φ̃w

0 (13; 42) + Φ̃w
0 (14; 23)

)}
(31)

∝
∫

d3k d3k12 d3k34 δ(E − ϵ − ϵ12 − ϵ34) exp
[
−a2k2

2
− a2k2

12 − a2k2
34

]

×
(
a2k2

12 + a2k2
34 −

1
2

a2k2 − 3
2

) (
a2k2

12 + a2k2
34 − a2k2

)
(32)

Energy spectrum P0(E) without any final state interaction is evaluated by integrating eq. (32).

P0 (E) ∝ exp
(
− E
ϵa

) ∫
dϵ dϵ12 dϵ34

√
ϵ ϵ12 ϵ34

δ (E − ϵ − ϵ12 − ϵ34)
(
ϵ12 + ϵ34 − ϵ

ϵa
− 3

2

) (
ϵ12 + ϵ34 − 2ϵ

ϵa

)
(33)

∝ X9/2e−X
∫ π/2

0
dα

∫ π/2

0
dβ sin3 α sin2 2α sin2 2β

(
X

(
sin2 α − cos2 α

)
− 3

2

) (
sin2 α − 2 cos2 α

)
(34)

∝ X11/2 exp (−X) , (35)
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Figure 1: Left: 1S0 phase shift of the nucleon-nucleon systems. SAID program is used for the pp and the
pn pair, whereas the effective range with higher order coefficients (c4 = −0.18 fm3 and c6 = 0.38 fm5) is
used for the nn pair (denoted by “delta efr46”). Right: Neutron-neutron wave functions using eq. (47) with
the phase shifts shown in the left panel. Numbers in the legend (0.03, 0.37, 0.79, and 1.19) denote the wave
numbers in fm−1.

where parameters K0 and R are determined to be 0.5563 fm−1 and 2.6723 fm, respectively, from the scatter-
ing length as and the effective range re by solving

re = R

⎡
⎢⎢⎢⎢⎢⎣1 −

1
2 (K0R)2 ·

R
as
− 1

6

(
R
as

)2⎤⎥⎥⎥⎥⎥⎦ (48)

K0cot (K0R) =
1

R − as
. (49)

See also Appendix A.3. The phase shift δk may be taken from the experimental data or evaluated by eq. (46)
as shown in the left panel of Fig. 1. Examples of eq. (47) are also shown in Fig. 1.

The density of states D1s(2s)(ϵnn) for the two-neutron wave packets, ψ1s(2s)(rnn) = u1s(2s)(rnn)/rnn, are
expressed by the coefficients Â1s(2s)(k) for expansion with the correlated two neutron wave function φk(rnn):

Dns (ϵnn) =

∣∣∣Âns (k)
∣∣∣2

k
(for n = 1, 2) ; ϵnn =

!2k2

mN
(50)

Â1s (k) =
∫ ∞

0
dr r ψ1s (r) φk (r) = 2

(
1√
πa3

)1/2

k A1s (k) (51)

Â2s (k) =
∫ ∞

0
dr r ψ2s (r) φk (r) = 2

√
2
3

(
1√
πa3

)1/2

k A2s (k) , (52)

where

A1s (k) =
1
k

∫ ∞

0
dr r exp

[
− r2

2a2

]
φk (r) (53)

A2s (k) =
1
k

∫ ∞

0
dr r

(
r2

a2 −
3
2

)
exp

[
− r2

2a2

]
φk (r) . (54)

Equation (47) may be used for φk(r).
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used for the nn pair (denoted by “delta efr46”). Right: Neutron-neutron wave functions using eq. (47) with
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numbers in fm−1.

where parameters K0 and R are determined to be 0.5563 fm−1 and 2.6723 fm, respectively, from the scatter-
ing length as and the effective range re by solving

re = R

⎡
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. (49)

See also Appendix A.3. The phase shift δk may be taken from the experimental data or evaluated by eq. (46)
as shown in the left panel of Fig. 1. Examples of eq. (47) are also shown in Fig. 1.

The density of states D1s(2s)(ϵnn) for the two-neutron wave packets, ψ1s(2s)(rnn) = u1s(2s)(rnn)/rnn, are
expressed by the coefficients Â1s(2s)(k) for expansion with the correlated two neutron wave function φk(rnn):

Dns (ϵnn) =

∣∣∣Âns (k)
∣∣∣2

k
(for n = 1, 2) ; ϵnn =

!2k2

mN
(50)

Â1s (k) =
∫ ∞

0
dr r ψ1s (r) φk (r) = 2

(
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k A1s (k) (51)

Â2s (k) =
∫ ∞

0
dr r ψ2s (r) φk (r) = 2

√
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(
1√
πa3

)1/2

k A2s (k) , (52)

where

A1s (k) =
1
k

∫ ∞

0
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2a2

]
φk (r) (53)
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1
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Equation (47) may be used for φk(r).
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Figure 1: Left: 1S0 phase shift of the nucleon-nucleon systems. SAID program is used for the pp and the
pn pair, whereas the effective range with higher order coefficients (c4 = −0.18 fm3 and c6 = 0.38 fm5) is
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where parameters K0 and R are determined to be 0.5563 fm−1 and 2.6723 fm, respectively, from the scatter-
ing length as and the effective range re by solving

re = R

⎡
⎢⎢⎢⎢⎢⎣1 −

1
2 (K0R)2 ·

R
as
− 1

6

(
R
as

)2⎤⎥⎥⎥⎥⎥⎦ (48)

K0cot (K0R) =
1

R − as
. (49)

See also Appendix A.3. The phase shift δk may be taken from the experimental data or evaluated by eq. (46)
as shown in the left panel of Fig. 1. Examples of eq. (47) are also shown in Fig. 1.

The density of states D1s(2s)(ϵnn) for the two-neutron wave packets, ψ1s(2s)(rnn) = u1s(2s)(rnn)/rnn, are
expressed by the coefficients Â1s(2s)(k) for expansion with the correlated two neutron wave function φk(rnn):

Dns (ϵnn) =

∣∣∣Âns (k)
∣∣∣2

k
(for n = 1, 2) ; ϵnn =

!2k2

mN
(50)

Â1s (k) =
∫ ∞

0
dr r ψ1s (r) φk (r) = 2

(
1√
πa3

)1/2

k A1s (k) (51)

Â2s (k) =
∫ ∞

0
dr r ψ2s (r) φk (r) = 2

√
2
3

(
1√
πa3

)1/2

k A2s (k) , (52)

where

A1s (k) =
1
k

∫ ∞

0
dr r exp

[
− r2

2a2

]
φk (r) (53)

A2s (k) =
1
k

∫ ∞

0
dr r

(
r2

a2 −
3
2

)
exp

[
− r2

2a2

]
φk (r) . (54)

Equation (47) may be used for φk(r).
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See also Appendix A.3. The phase shift δk may be taken from the experimental data or evaluated by eq. (46)
as shown in the left panel of Fig. 1. Examples of eq. (47) are also shown in Fig. 1.

The density of states D1s(2s)(ϵnn) for the two-neutron wave packets, ψ1s(2s)(rnn) = u1s(2s)(rnn)/rnn, are
expressed by the coefficients Â1s(2s)(k) for expansion with the correlated two neutron wave function φk(rnn):

Dns (ϵnn) =
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Equation (47) may be used for φk(r).
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Density	of	State 

Expand AΦ0 with correlated n-n scattering wave φk(r) 
A(k)’s are used instead of Fourier component 
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ConInuum	spectrum	with	n-n	FSI	

Direct Part 

2n 

2n 

DCX 

4He	~	Φ[(0s)4] 

Two correlated 
neutron pairs 
with weakly correlated 

q << 200 MeV/c 
a2n-2n = 0, -0.5, -1, -3, -5 fm 

Free 4n (w/o nn FSI) 

4n wave packet just 
after DCX 
Φ0~	r1・r2 Φ[(0s)4] 

Correlation is taking into account for 2n-2n relative motion by using scattering length 

Eα
 ; 
α

~3
 

Eα ; α=3.5 



Fit with direct component & BG�
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analysis.
For the calibration of the energy of tetra-neutron sys-

tem E4n, the 1H(8He,8Li(1+))n reaction from the plastic
scintillator around target area was measured by changing
the magnetic field of the SHARAQ spectrometer. From
the peak position of the 8Li and the ratio of the field
integrals of the magnets, the missing mass of the DCX
reaction was calibrated. The systematic error due to the
calibration was estimated to be 1.25 MeV.

We obtained 27 events produced by the 4He(8He,8Be)
reaction in the energy −25 < E4n < 65 MeV region.
Figure 2 (a) shows the obtained missing-mass spectrum
of tetra-neutron system. The energy of E4n = 0 MeV
corresponds to the threshold of four-neutron decay. The
acceptance of the spectrometer was constant in the region
of the spectrum.
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direct decayresonance

wave packet 
just after reaction

E4n

E4n

FIG. 2. (color line). (a) The missing-mass spectrum of the
tetra-neutron system. The solid (red) line represents the
curve, which is sum of the result of the calculation and the
estimated background (see text). The dashed (blue) line rep-
resents the curve, which is ten times of the estimated back-
ground. The schematic picture of the decay mode is discussed
in text. (b) Evaluation of the goodness-of-fit for each bin us-
ing likelihood ratio test. The si were defined in Eq. (3).

We estimated the shape and yields of a background in
the missing-mass spectrum. The multi-particle in a trig-
gered bunch was considered a possible source of a back-
ground. A large fraction of these events were rejected
using the MWDC at F6. However, since the detection ef-
ficiency of the MWDC was limited, multi-particle events
contribute to the background in cases where one of the
particles is detected while the other was not. Further-
more, events with multi-particle in same space separated
from wires of the MWDC were not identified as two par-

ticles. Another possible sources of the background are es-
timated to be negligible, which are, for instance, events
misidentified to α particle, events produced by the foil
of the detectors. The magnitude was estimated to be
2.2 ± 1.0 events in the spectrum by using the measured
magnitudes of the detection efficiency of MWDCs. The
shape of the background was reconstructed by using a
spectrum of single-alpha events identified at S2, which
is consistent with the missing-mass spectrum of two al-
phas for the events identified as the multi-particle in a
triggered bunch. The dashed line (blue) in Fig. 2 (a)
represents the estimated background magnified by 10 for
visualization purpose.

While the statistics is small, there seems to be two
components in this spectrum. One is the continuum in
the E4n > 2 MeV region. The other is the strength at
the low energy region 0 < E4n < 2 MeV. In order to
interpret this spectrum, we assume two different decay
modes of the populated tetra-neutrons. One is the direct
decay with the final-state interaction between the two
correlated neutron pairs. This direct decay makes a con-
tinuum in the spectrum. The other is possible resonant
or bound state of the tetra-neutron system.

The shape of the continuum of the tetra-neutron sys-
tem produced by reactions was discussed by Grigorenko
et al [28]. In their paper, energy spectrum is calculated
assuming that the wave packet of the tetra-neutron sys-
tem just after the reaction is considered to be the source
evolving by the four-body Hamiltonian. For the case of
the knockout reaction of 8He, the peak position of the
continuum is predicted to be about 12 MeV (4 MeV) for
the source size of 5.6 fm (8.9 fm). On the other hand, for
the pion DCX reaction on the 4He, the peak position is
expected to be 30–40 MeV because of the compact source
from the tightly bound 4He.

We applied this idea to the DCX reaction of
4He(8He,8Be). The calculation allows to incorporate the
initial structure of target nuclei, reaction mechanism,
few-body effects and final-state interaction in studies
of unbound states for analyzing the present data. The
initial-state of the wave function of 4He was assumed to
be Φ[(0s)4]. After the DCX reaction, the four-neutron
wave packet with angular the momentum J = 0 is as-
sumed to be Φ[(0s)2(0p)2]. Here, we consider the double-
dipole nature in the DCX reaction due to the Pauli block-
ing effect. The final-state interaction between the two
neutrons in the 1S0 neutron pair (di-neutron) and be-
tween two di-neutrons are taken into account.

In the result of the calculation, the peak position
of the continuum of about 30 MeV is well reproduced
for the data. The spectral shape near the threshold
(E4n < 4 MeV) is approximated by Eα (α ∼ 3) similar
to the index α = 7/2 for the four-body phase space. It is
noted that the calculation without a long-lived resonance
predicts very small contribution near the threshold.

In order to demonstrate the significance of the yields
near the threshold, we fitted the experimental data with a
trial function assuming neither resonant state nor bound

Energy spectrum is expressed by the 
continuum from the direct decay and 
(small) experimental background 
except for four events at 0<E4n<2 MeV	
The Four events suggest a possible 
resonance at 	
0.83 ± 0.65(stat.) ± 1.25(sys.) MeV 
with width narrower than 2.6 MeV 
(FWHM). [4.9σ significance]	
Integ. cross section θcm< 5.4deg: 	
 3.8 +2.9 

-1.8 nb 

µne�µ/n! ' 10

�6
for µ = 0.07, n = 4



Summary�
•  4He(8He,8Be)4n has been measured at 190 A MeV at RIBF-

SHARAQ 
•  Missing mass spectrum with very few background 
•  Although statistics is low (27 evs), spectrum looks two 

components (continuum + peak) 
•  Continuum is consistent with direct breakup process from 

(0s)2(0p)2 wave packet 
•  Four events just above 4n threshold is statistically beyond 

prediction of continuum + background (4.9 σ significance) 
  → candidate of 4n resonance  

     at 0.83 ± 0.65(stat.) ± 1.25(sys.) MeV; Γ < 2.6 MeV 
•  Constraint to nucleon forces : n-n two body; T=3/2 three-

body force; non-central; off-energy shell ... 


