

¹³Be studied by (p,2p) deep inelastic scattering reaction in complete kinematics.

O. Tengblad

G. Ribeiro, E. Nácher & B. Jonson* for the R³B collaboration

Instituto de Estructura de la Materia, CSIC, Madrid *Chalmers Tekniska Högskola, Göteborg

O. Tengblad: 14B(p,2p)13Be

S393 experiment

Study of light neutro-rich nuclei (Be-Ne), using kinematically complete measurements in inverse kinematics @ GSI

quasi-free scattering: ¹⁴B(p,2p)¹³Be

Quasi-Free Scattering: Knockout reaction

O. Tengblad: 14B(p,2p)13Be

Previous studies

100

50

0

0

do/dErel (mb/MeV)

2007 GSI¹⁴Be(p,pn)¹³Be

H. Simon et al. / Nuclear Physics A 791 (2007) 267-302

The 12Be + n system reveals resonances with complicated structures. Using the data obtained in other experiments, one may conclude that the s-wave interaction between the neutron and 12Be fragment is much weaker than that in the ⁹Li + n case. The $I\pi =$ 1/2- assignment to the ¹³Be state at 3.04(7) MeV was made from comparison with the neighbouring N = 9 isotones, and further confirmed by the measured 12Be - n angular correlations.

2013 GSI ${}^{14}Be(p,pn)^{13}Be$

O. Tengblad: 14B(p,2p)13Be

Randisi, et.al. Phys. Rev. C, 89, 034320, (2014) E. (MeV) T. (MrV) 1/1(1/2*) 1/2 0.40 + 0.03 0.80 1.00 5/2* 0.85^{+0.14} 2.35±0.14 0.40 ± 0.07 1.50 ± 0.40 0.80 ± 0.01

Reconstructed ¹²Be + n decay energy for the C(¹⁴B, ¹²Be + n)

reaction compared to simulations incorporating an

s -wave virtual state

d -wave resonance

d -wave resonance

nonresonant continuum.

CSIC

The relative energy spectra obtained

Concludes that the 0.5-MeV peak

The p-wave nature of the 0.5-MeV

momentum distribution and the

resonance width. This state was

assigned to $7\pi = 1/2 - .$

a, or Er

-3.4(6) fm 0.51(1) MeV

2.39(5) MeV

resonance was shown by the transverse

I.

0.45(3) McV

2.4(2) MeV

is the ground state of 13Be.

in coincidence with the 2.1-MeV

(filled circles) and 2.7-MeV (open

triangles) y rays are shown in the

inset.

WBP - w shell- model calculations

HTF estimated, for positive-parity states, within the simplified scheme of Fortune Phys. Rev. C 87, 014305 (2013), where the lowest 1/2+ state is assumed to lie 0.4 MeV above threshold.

The Randisi results are shown (EXP), where the level 0.40 MeV above the 12Be + n threshold is identified with the predicted 1/2+ state. Experimental energies are listed with respect to the 12Be + n threshold.

2

 $E_{\rm rel}$ (MeV)

2010 RIKEN ${}^{14}Be(p,pn)^{13}Be$

 ${}^{13}\text{Be} \rightarrow {}^{12}\text{Be}+n+\gamma$

 $E_{\rm rel}$ (MeV)

3

Kondo et.al. Phys. Lett. B, 690, (2010), 245-249

(mb/MeV)

1

dE

pp

20

Summary Previous studies 2014

R³B

MSU: ${}^{13}B(-1p + 1n)$ nucleon exchange reaction on ${}^{9}Be$ @ 71 AMeV

B. R. Marks, et.al Phys Rev C 92, 054320 (2015)

Experiment: Cave C @ GSI

CSIC

Reaction channel Idenitification

- Energy loss in the TFW & SST after the target: Identify the element after the reaction.
- Identify the isotope from the ALADIN position deviation and beta of the fragment.

¹³Be relative energy spectrum $(^{12}Be+n)$

Relative energy spectrum¹³Be = ¹²Be + n considering **three resonances** Breit Wigner functions with l= 0 for the green line, l= 2 for the blue line, l= 2 for the purple line. **The global fit** $\chi^2 = 1.57$ represented by the red line.

Δ0 ≈80*

Quasifree scattering conditions (p,2p)

Both particles are emitted in the same plane, and as both have the same mass, with an opening angle of 90° in the laboratory frame.

The coplanar condition translates to 180° , whereas the high energies in inverse kinematics produce an opening angle of 80° , due to the mass increase of the incoming nucleon @ relativistic velocities ($\beta = 0.7$).

Angular distribution of the 2p in coincidence with ¹²Be+n:

- (a) Polar Angle correlation;(c) Opening Angle, peaked at 82;
- (b) Azimuthal Angle correlation;(d) Azimuthal angle difference, peaked at 180.

The vertical dashed lines in (c) and (d) represent the limits for the QFS conditions.

CSIC

Adding the Quasifree scattering conditions leads to less statistics, but clean data

Relative energy spectrum¹³Be = ¹²Be + n considering **QFS conditions** the global fit to four Breit-Wigner resonances **fit** χ^2 = **1.3 red line.**

CSIC

The R3B set-up @ GSI Cave C

What is New compared to previus experiments?

¹³Be Doppler corrected Gamma spectrum detected by Crystal Ball in coincidence with ¹²Be+n

¹³Be Gamma spectrum detected by Crystal Ball in coincidence with ¹²Be+n. fitted to an exponential + Gaussian distribution in order to subtract the background.

βB	Cor	nclusion of	on ¹³ Be		
	5.2 (3/25/2+)	H.T. Fortune Ph	iys. Rev C93, 5, 3	31 May 2016, Article	e number 054327
5.00		expected width 5/2+ resonance above 2 MeV. However, iden 2 MeV with the between exper	s are in serious c e near (or just below tifying the resor e first 5/2+ resor rimental and cal	onflict with the hypo ow) 1 MeV and a se nance just above ance gives good a culated widths."	and othesis of a cond one
3.04 (1/2-)	3.02 (1/2-)			<u>3.14 3/2</u> *	3.05(8) (5/2+, 1/2 ⁺)
2.39 (5/2+)	2.9 (1/2+)	2.35 (5/2+)	<u>3.07 1/2</u> 2.65 1/2 ⁺	2.72 3.12 1/2* 2.30 2.70 5/2*	0.10(0)
2.00 (5/2+)	2. 5/2+		<u>1.88 5/2</u> *	<u>1.39 1.79 5/2</u> *	2.16(6) (5/2 ⁺)
$\underbrace{0.51}_{0.51} (1/2^{-})$	0.46 (1/2+)	0.85 (5/2 ⁺) 0.40 (1/2 ⁺)	$\begin{array}{c c} 0.62 & 5/2^+ \\ \hline 0.56 & 3/2^+ \\ \hline 0.32 & 1/2^+ \end{array}$	0.40 0.2*	0.33(4) (1/2 ⁺)
Simon et al. Kondo et al.	Aksyutina et al	Randisi et al. Randisi, et.al. Ph	0.0 1/2 WBP Nys. Rev. C, 89, 034320 Fortune, Phys. F	HTF , (2014) Rev. C 87 , 014305 (2013)	This wor

- Discussed the previous experimental knowledge of the unbound nucleus ¹³Be
- We have measured and discussed the gamma emission in coincidence with ¹³Be i.e. with the ¹²Be+n system
- This gamma coincidence noves the excitation level in ¹³Be from 0.9 MeV to 3 MeV