Break up reactions with exotic nuclei and the impact of core excitations: from 19 C to 31 Ne

Commissione europea

J. A. Lay¹, A. M. Moro², J. M. Arias², R. de Diego³

 ¹DFA "Galileo Galilei", Università di Padova and INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy; ²Dpto. de FAMN, Universidad de Sevilla, Apdo. 1065, E-41080 Sevilla, Spain;
 ³Centro de Física Nuclear, Universidade de Lisboa, Av. Prof. Gama Pinto 2, P-1649-003 Lisboa, Portugal

Halifax, 13th July 2016

Core excitations

Motivation

× No core excitations $|^{11}Be(1/2^+)\rangle =$ $1|^{10}Be(0^+ \text{ g.s.})\otimes \nu \text{ s}_{1/2} \rangle$

 $|\alpha|^2, |\beta|^2 =$ spectroscopic factors

J.A. Lay et al. (U. Padova)

Motivation

x Pure valence excitation

 ✓ Core-excitation mechanism

◆□ ▶ ◆戸

三日 のへぐ

Hamiltonian with core excitation

$$\mathcal{H}_{p} = T(\vec{r}) + h_{core}(\xi) + V_{NC}(\vec{r},\vec{\xi})$$

<u>Model</u> for the core *h_{core}*(ξ)

- Selecting the model space \Rightarrow which states are included
- The model for core excitations will determine $V_{NC}(\vec{r}, \vec{\xi})$

Same formalism for different interaction models:

- Particle-Rotor model (deformed core)
- Particle-Vibration
- From microscopic transition densities
- . . .

J.A. Lay et al. (U. Padova)

Core excitations

Weak coupling limit

Hamiltonian with core excitation
$$\mathcal{H}_{p} = T(\vec{r}) + h_{core}(\xi) + V_{NC}(\vec{r}, \vec{\xi})$$

We look for a basis including core degrees of freedom

Coupling core $\varphi_I(\vec{\xi})$ and single particle $\mathcal{Y}_{\ell s j}(\hat{r})$ to the total J_p

 \Rightarrow n_{α} different possible combinations or channels $\alpha = \{l, s, j, l\}$

Structure Halo nuclei with excitations of the core

Generalization of Pseudo-states (PS) discretization method

Hamiltonian with core excitation
$$\mathcal{H}_p = T(\vec{r}) + h_{core}(\xi) + V_{NC}(\vec{r}, \vec{\xi})$$

Set of \mathcal{L}^2 functions in this scheme:

$$|\phi_{i,J_{\rho}}(\vec{r},\vec{\xi})\rangle = \sum_{\alpha} R_{i,\alpha}^{THO}(r) \left[\mathcal{Y}_{\ell s j}(\hat{r}) \otimes \varphi_{I}(\vec{\xi}) \right]_{J_{p}} \quad i = 1,..,N$$

 \Rightarrow Total number of functions: N times the number of channels

$$N \cdot n_{\alpha}$$

EL OQO

Structure PS discretization method

Pseudo-states (PS) discretization method

• Discrete set of
$$\mathcal{L}^2$$
 functions: $|\phi_n\rangle$

• To diagonalize the internal Hamiltonian of a projectile \mathcal{H}_p

Matrix elements:

$$\mathcal{H}_{p}\longmapsto\sum_{n,n'}|\phi_{n}\rangle\langle\phi_{n}|\mathcal{H}_{p}|\phi_{n'}\rangle\langle\phi_{n'}|$$

J.A. Lay et al. (U. Padova)

・ロト < 回ト < 三ト < 三ト < 回ト < のへの

Structure PS discretization method

Pseudo-states (PS) discretization method

Eigenstates of the matrix NxN:

$$|\varphi_n^{(N)}\rangle = \sum_{i=1}^{N} C_i^n |\phi_i\rangle$$

• $\begin{cases} n_b \text{ states with } \varepsilon_n < 0 \text{ representing the bound states.} \\ \text{N-n}_b, \varepsilon_n > 0 \Rightarrow \text{discrete representation of the Continuum} \end{cases}$

• Orthogonal and normalizable.

What is the most suitable basis? Lagrange, Sturmian, Harmonic Oscillator?

HO vs THO:

$$\phi(s) \longmapsto e^{-\left(\frac{s}{b}\right)^2} \implies \phi[s(r)] \longmapsto e^{-\frac{\gamma^2}{2b^2}r}$$

J.A. Lay et al. (U. Padova)

イロト 不過 ト イヨト イヨト しつくつ

Semi-microscopic model

EL NOR

P-AMD

Densities from Antisymmetrized Molecular Dynamics (AMD)

Y. Kanada-En'yo et al. Phys. Rev. C 60, 064304 (1999)

P-AMD

$$\langle I||V_{NC}^{\lambda}(r,\vec{\xi})||I'
angle = \int dr' \left[\langle I||
ho_{\lambda}(r',\xi)||I'
angle v_{nn}(|\vec{r}-\vec{r'}|)
ight]$$

JLM interaction Phys. Rev. C 16, 80 (1977).

J.A. Lay et al. (U. Padova)

Structure Semi-microscopic model

P-AMD

三日 のへの

→ 문 ► → 문 ►

< 同

Structure Application to ¹¹Be and ¹⁹C

P-AMD

Renormalization factors

 $\lambda_+ = 1.058$ and $\lambda_- = 0.995$

PRC 70, 054606 (2004); PRC 81, 034321 (2010); PL B 611, 239 (2005).

sin a Luy ce an (or radora)	J.A.	Lay	et	al.	(U.	Padova)	1
-----------------------------	------	-----	----	-----	-----	---------	---

¹⁹C Spectrum

PLB660, 320 (2008); PLB614, 174 (2005).

ъ

¹⁹C Spectrum

PLB660, 320 (2008); PLB614, 174 (2005) SAMURAI EPJWoC113, 06014

State	Model	$ 0^+\otimes (\ell s)j angle$	$ 2^+\otimes \textit{s}_{1/2} angle$	$ 2^+\otimes d_{3/2} angle$	$ 2^+\otimes d_{5/2} angle$
$1/2_1^+$	P-AMD	0.529	_	0.035	0.436
	WBP	0.600	-	0.002	0.184
$3/2^+_1$	P-AMD	0.028	0.386	0.121	0.464
	WBP	0.027	0.494	0.001	0.076
$5/2^+_1$	P-AMD	0.276	0.721	0.000	0.003
	WBP	0.383	0.015	0.000	0.751
$5/2^+_2$	P-AMD	0.200	0.142	0.002	0.657
	WBP	0.035	0.609	0.009	0.291

J. A. Lay et al., PRC89, 014333

-

< □ > < 同 >

>>< ∃ ≥ < ∃ = < < <

Reactions DWBAx

DWBAx calculations

No-recoil approach

- \Rightarrow Only first order excitation.
- ⇒ Same results for these energies than XCDCC. A. M. Moro *et al.* AIP Conf. Proc. 1491, 335 (2012)
- ⇒ Core and valence particle contributions evaluated separately A. M. Moro & R. Crespo, Phys. Rev. C 85, 054613 (2012)

EL NOR

$$T_{if}^{JM,J'M'} = \langle \chi_f^{(-)}(\vec{R}) \Psi_{J'M'}^f(\vec{r},\xi) | V_{vt}(\vec{r}_{vt}) + V_{ct}(\vec{r}_{ct},\xi) | \chi_i^{(+)}(\vec{R}) \Psi_{JM}^i(\vec{r},\xi) \rangle$$

Core excitation affects in two ways:

• $\Psi_{JM}(\vec{r},\xi) = \text{projectile states} \Rightarrow$ "static" deformation effect).

$$\Psi_{JM}(\vec{r},\xi) = \sum_{\ell,j,l} \left[\varphi^J_{\ell,j,l}(\vec{r}) \otimes \Phi_l(\xi) \right]_{JM}$$

O $V_{ct}(\vec{r}_{ct},\xi)$ can modify the core state \Rightarrow dynamic core excitation.

EL NOR

Only first order plus no-recoil:

1 $T_{val}^{JM,J'M'} \Rightarrow$ Valence excitations **2** $T_{core}^{JM,J'M'} \Rightarrow$ Core excitations

⇒ They explicitly separates in the calculation
 A. M. Moro & R. Crespo, Phys. Rev. C 85, 054613 (2012)

J.A. Lay et al. (U. Padova)

EL OQA

Reactions DWBAx

¹⁹C+*p* @ 67 MeV/u

Y. Satou et al., Phys. Lett. B 660, 320 (2008).

Microscopic DWBA calculations suggest a $1/2^+ \Rightarrow 5/2^+$ transition

J.A. Lay et al. (U. Padova)

Reactions DWBAx

¹⁹C+p @ 67 MeV/u

J.A. Lay et al. (U. Padova)

¹⁹C+*p* @ 67 MeV/u

 \Rightarrow J. A. Lay *et al.*, Submitted to PRC(R) arXiv:1605.09723 \Rightarrow A. M. Moro & J. A. Lay, Phys. Rev. Lett. 109, 232502 (2012)

J.A. Lay et al. (U. Padova)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のの⊙

PRL 112, 142501 (2014).

J.A. Lay et al. (U. Pado

/a)	Core excitations	Halifax, 13/07/2016	28 / 34

³¹Ne+*p* @ 70 MeV/u

J.A. Lay et al. (U. Padova)

Full CDCC

XCDCC calculations

Including core excitations in CDCC

- $\Rightarrow\,$ We already showed how to discretize the continuum with core excitations
- \Rightarrow DWBA only valid for intermediate and high energies
- \Rightarrow CDCC also includes the effect of break up in the elastic cross section

J.A. Lay et al. (U. Padova)

Core excitations

Reactions XCDCC XCDCC calculations for ${}^{11}\text{Be} + {}^{197}\text{Au}$ at sub-barrier energies

- Experiment: TRIUMF (Aarhus LNS/INFN Colorado GANIL -Gothenburg -Huelva - Louisiana - Madrid - St. Mary - Sevilla - York collaboration)
- I. G. Borge's talk on Friday
 Image: Ward of the war
- Submitted to PRL

P-AMD

- Accurate semi-microscopic description of even-odd halo nuclei
- Predictive power for unknown halo nuclei like ^{19,21}C
- Could be able to include core excitations from different sources

Nuclear Break up

- Evidence of a strong dynamic core excitation in ¹⁹C resonant break up
- The interplay between core and valence contributions is crucial to understand resonant break up of halo nuclei
- Break up reactions are sensitive to spectroscopic factors of resonant states difficult to populate in traditional transfer reactions

Theory

- University of Seville : J. Gómez-Camacho, M. Gómez-Ramos
- University of Lisbon : R. Crespo
- University of Surrey : R. C. Johnson
- Yukawa Institute, Kyoto University : Y. Kanada-En'yo

Experiment

- IEM-CSIC, Madrid : V. Pesudo, M. J. G. Borge, O. Tengblad
- S1202 Collaboration (formerly E1104)

J.A. Lay et al. (U. Padova)

$^{11}\text{Be}+^{12}\text{C}$ @ 67 MeV/nucleon

RIKEN: N. Fukuda et al., Phys. Rev. C70, 054606 (2004)

 \Rightarrow Measurement of Break up Cross Sections of ¹¹Be on ¹²C and ²⁰⁸Pb

J.M. Lay et al. (U. Fauuva)	J.A.	Lay	et	al.	(U.	Padova)	
-----------------------------	------	-----	----	-----	-----	---------	--

EL NOR

- Hamiltonian:
 - $H_p = T_r + V_{vc}(\vec{r}, \xi) + h_{core}(\xi)$ $H = H_p + V_{vt}(r_{vt}) + V_{ct}(\vec{r}_{ct}, \xi)$

Model wavefunction:

$$\Phi(\vec{R},\vec{r},\boldsymbol{\xi}) = \sum_{\alpha} \chi_{\alpha}(\vec{R}) \Psi^{\alpha}_{J'M'}(\vec{r},\boldsymbol{\xi})$$

• Coupled equations: $[H - E]\Phi(\vec{R}, \vec{r}, \xi) = 0$

$$\left[E - \varepsilon_{\alpha} - T_{R} - V_{\alpha,\alpha}(\vec{R})\right] \chi_{\alpha}(\vec{R}) = \sum_{\alpha' \neq \alpha} V_{\alpha,\alpha'}(\vec{R}) \chi_{n'}(\vec{R})$$

• Transition potentials:

$$V_{\alpha;\alpha'}(\vec{R}) = \langle \Psi_{J'M'}^{\alpha'}(\vec{r},\xi) | V_{vt}(\vec{r}_{vt}) + V_{ct}(\vec{r}_{ct},\xi) | \Psi_{JM}^{\alpha}(\vec{r},\xi) \rangle \bigg|$$

J.A. Lay et al. (U. Padova)

Coupling potentials: CDCC vs. XCDCC

• Standard CDCC. \Rightarrow uses coupling potentials:

$$V_{lpha;lpha'}(ec{R}) = \langle \Psi^{lpha'}_{J'M'}(ec{r})|V_{vt}(r_{vt}) + V_{ct}(r_{ct})|\Psi^{lpha}_{JM}(ec{r})
angle$$

• Extended CDCC \Rightarrow uses generalized coupling potentials

$$V_{\alpha;\alpha'}(\vec{R}) = \langle \Psi^{\alpha'}_{J'M'}(\vec{r},\xi) | V_{vt}(\vec{r}_{vt}) + V_{ct}(\vec{r}_{ct},\xi) | \Psi^{\alpha}_{JM}(\vec{r},\xi) \rangle$$

R. de Diego *et al*, PRC89 (2014) 064609 (PS discretization) also for binning Summers *et al*, PRC74 (2006) 014606

J.A. Lay et al. (U. Padova)

Finding Resonances

Finding Resonances

Spectrum

三日 のへの

Electromagnetic Transition Probabilities

 \Rightarrow B(E2) dominated by collective excitation of the core

J.A. Lay et al. (U. Padova)

Core excitations

Halifax, 13/07/2016 41 / 34

$^{19}C+^{208}Pb$ @ 67 MeV/u

T. Nakamura et al., Phys. Rev. Lett. 83, 1112 (1999).

 The reaction is dominated by E1 first order Coulomb excitation as expected

J.A. Lay et al. (U. Padova)

¹⁹C+²⁰⁸Pb @ 67 MeV/u

Resonant E2 contribution more important due to its low excitation • energy

J.A. Lay et al. (U. Padova)

= = nar

State	Model	$ 0^+\otimes (\ell s)j angle$	$ 2^+\otimes s_{1/2} angle$	$ 2^+\otimes d_{3/2} angle$	$ 2^+\otimes d_{5/2} angle$
5/2+	P-AMD	0.119	0.236	0.426	0.219
$1/2^{+}$	P-AMD	0.360	_	0.111	0.529

・ロト < 団 > < ヨ > < 団 > < ロ > < ロ > < < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Transformed Harmonic Oscillator basis

Analytic LST from Karataglidis et al., PRC71,064601(2005)

$$s(r) = \frac{1}{\sqrt{2}b} \left[\frac{1}{\left(\frac{1}{r}\right)^m + \left(\frac{1}{\gamma\sqrt{r}}\right)^m} \right]^{\frac{1}{m}}$$

HO vs THO:

$$\phi(s) \longmapsto e^{-\left(\frac{s}{b}\right)^2} \implies \phi[s(r)] \longmapsto e^{-\frac{\gamma^2}{2b^2}r}$$

• Correct asymptotic behaviour for bound states.

Range controlled by the parameters of the LST.

J.A. Lay et al. (U. Padova)

THO parameters

- b is treated as a variational parameter to minimize g.s. energy
- Then $\frac{\gamma}{h}$ controls the density of states:

 $\bullet~\gamma$ can be also used to look for resonances

J.A.	Lay	et	al.	(U.	Padova)
------	-----	----	-----	-----	--------	---

PRM "drawbacks"

PRM needs:

- The core to be a rotor
- A phenomenological potential based on the following parametres:

 $E(2^+)$, β_2 , V_c , r, a, V_{so} , r_{so} , a_{so}

< □ > < 同 >

²¹C Spectrum

PRC86, 054604; SAMURAI S. Leblond's talk #100

J.A.	Lav	et	al.	(U.	Padova)	1
		~				

= 990

¹¹Be in a single particle model

J.A. Lay et al. (U. Padova)

Core excitations

Halifax, 13/07/2016 49 / 34