DREB2016 Halifax July 11 (11-15), 2016

Shell evolution and spectroscopic factors

THE UNIVERSITY OF TOKYO

Shell evolution

Type I : magic number magic index (prob. that the ground state is a closed shell.)

> Type II : shape coexistence quantum phase transition (abrupt shape change)

"MAGIC IS MIGHT"

The ministry of magic London, U.K.

They are related to spectroscopic factors

Background picture courtesy from Pieter Doornenbal

 2^+ levels x A $^{1/3}$

Z, N even numbers only

Appearance of N= 32 and 34 magic structures

Experiment @ RIBF \rightarrow Finally confirmed

er-corrected γ-ray energy spectra. De-excitation γ rays measured in coinci-⁴Ca and c, ⁵³Ca reaction products. Peaks a Steppenbeck *et al.* Nature, 502, 207 (2013) we intensities are indicated by italic fonts. The short-blue and long-black dashed 2⁺ energy level v.s. shell gap

Calculation by GXPF1Br interaction

Spectroscopic Factors

MCSM basis vectors on Potential Energy Surface

eigenstate $\Psi = \sum c_i P[J^{\pi}] \Phi_i$ Slater determinant \rightarrow intrinsic shape

- PES is calculated by CHF for the shellmodel Hamiltonian
- Location of circle : quadrupole deformation of unprojected MCSM basis vectors
- Area of circle : overlap probability between each projected basis and eigen wave function

Y. Tsunoda, TO, Shimizu, Honma and Utsuno, PRC 89, 031301 (R) (2014)

Different appearance of Double Magicity of 56,68,78Ni

Why 53% for ⁶⁸Ni ?

The ground state of 68 Ni contains about 1 neutron in the $g_{9/2}$ + $d_{5/2}$ orbits.

=> ~50% OpOh and ~50% 2p2h configurations.

The state is largely spherical because the mixing is mainly due to the $J=0^+$ pairing.

Proton Z=28 shell is broken only by 0.2 protons excited, with SF $(7/2_1^-) \sim 7.3$.

Quantum Phase Transition in Zr isotopes caused by type II shell evolution Togashi, Tsunoda, Otsuka *et al.* 1606.09056v1 [nucl-th]

Model space and Effective interaction

 Effective interaction: JUN45 + snbg3 + V_{MU}

known effective interactions

> + minor fit for a part of T=1 TBME's

Nucleons are excited fully within this model space (no truncation)

Summary

- 1. Magic structure can be studied further (better) from the viewpoint of wave functions by the help of spectroscopic factors.
- For example, ⁵²Ca and ⁵⁴Ca are equally magic, although the 2⁺ level is lower in the latter. (An exercise of the tensor force.)
- 3. ⁶⁸Ni is more spherical than ⁷⁸Ni, whereas ⁷⁸Ni shows higher magic index than ⁶⁸Ni.
- 4. TNA can be very interesting in ⁹⁶Zr-⁹⁸Zr-¹⁰⁰Zr, because of the abrupt change, i.e., the quantum phase transition.

Collaborators

- Yusuke Tsunoda (CNS, Tokyo)
- Tomoaki Togashi (CNS, Tokyo)
- Naofumi Tsunoda (CNS, Tokyo)
- Noritaka Shimuzu (CNS, Tokyo)
- Yutaka Utsuno (JAEA)
- Kazuo Takayanagi (Sophia Univ.)
- Toshio Suzuki (Nihon Univ.)
- Morten Hjorth-Jensen (MSU/Oslo)