Shell evolution

and

spectroscopíc factors

Takaharu Otsuka
University of Tokyo／MSU／KU Leuven
東京大学
THE UNIVERSITY OF TOKYO

Center for
Nuclear Study
The University of Tokyo

KULEUVEN

Shell evolution

\longrightarrow Type I:

magic number
magic index
(prob. that the ground
state is a closed shell.)

Type II:
shape coexistence quantum phase transition (abrupt shape change)

"MAGIC IS MIGHT"
The ministry of magic London, U.K.

They are related to spectroscopic factors

Background picture courtesy from Pieter Doornenbal
2^{+}levels $\times A^{1 / 3}$
Z, N even numbers only
Red numbers: Conventional magic numbers

Appearance of $\mathrm{N}=32$ and 34 magic structures

shell structure for neutrons in Ni isotopes ($f_{7 / 2}$ fully occupied)
$\mathrm{P}_{1 / 2}$
$f_{5 / 2}$

$P_{3 / 2}$

Mayer-Jensen, 1949
$\mathrm{N}=34$ magic number may appear if proton $\mathrm{f}_{7 / 2}$ becomes vacant (Ca) ($f_{5 / 2}$ becomes less bound)

$P_{3 / 2}$
ISOLDE experiment Huck et al., PRC 31, 2226 (1985).

Predicted by TO et al, PRL 87, 082502 (2001)

Experiment @ RIBF \rightarrow Finally confirmed

FIG. 4: Systematics of excited-state e pen-
even Ca isotopes and neighbouring n of first 2^{+}(closed symbols) and 3^{-}(open even-even ${ }^{42-54} \mathrm{Ca}$ isotopes [28]. The res study are indicated by triangular marker dashed lines are shell-model predictions of respectively (see text for details). Tentat
new RIBF data signments are enclosed by parentheses. b, $E\left(2_{1}^{+}\right)$along the $N=30,32$ and 34 isotonic chains. The solid and dashed lines are intended to guide the eye. Vertical dotted lines represent the traditional magic numbers in both plots.
er-corrected γ-ray energy spectra. De-excitation γ rays measured in coinci-
${ }^{4} \mathrm{Ca}$ and c , ${ }^{53} \mathrm{Ca}$ reaction products. Peaks a Steppenbeck et al. Nature, 502, 207 (2013)
ve intensities are indicated by italic fonts. The short-blue and long-black dashed

2^{+}energy level v.s. shell gap

Calculation by GXPF1Br interaction

One-dimensional collision model

TO, Suzuki et al. PRL 95, 232502 (2005)
TO, Phys. Scr. T152, 014007 (2013)

- summary-

At collision point: $\Psi \propto e^{i k_{1} x_{1}} e^{i k_{2} x_{2}}+e^{i k_{2} x_{1}} e^{i k_{1} x_{2}}=2 e^{i K X} \cos (k x)$

large relative momentum k
凸
strong damping

wave function of relative coordinate

$$
k=k_{1}-k_{2}, \quad K=k_{1}+k_{2}
$$

4 spin

wave function of relative motion

Spectroscopic Factors

MCSM basis vectors on Potential Energy Surface

$$
\text { eigenstate } \Psi=\sum_{i} c_{i} P\left[J^{\pi}\right] \Phi_{i} \longleftarrow \text { Slater determinant } \rightarrow \text { intrinsic shape }
$$

- PES is calculated by CHF for the shellmodel Hamiltonian
- Location of circle : quadrupole deformation of unprojected MCSM basis vectors
- Area of circle : overlap probability between each projected basis and eigen wave function

spherical $\left\langle Q_{0}\right\rangle\left\langle\left[\mathrm{mm}^{2}\right\rfloor\right.$ prolate
Called T-plot in reference to
Y. Tsunoda, TO, Shimizu, Honma and Utsuno, PRC 89, 031301 (R) (2014)

Different appearance of Double Magicity of ${ }^{56,68,78} \mathrm{Ni}$

Why 53% for ${ }^{68} \mathrm{Ni}$?

The ground state of ${ }^{68} \mathrm{Ni}$ contains about 1 neutron in the $g_{9 / 2}+d_{5 / 2}$ orbits.
\Rightarrow ~50\% OpOh and $\sim 50 \%$ 2p2h configurations.
The state is largely spherical because the mixing is mainly due to the $\mathrm{J}=\mathrm{O}^{+}$pairing.

Proton $\mathrm{Z}=28$ shell is broken only by 0.2 protons excited, with SF $\left(7 / 2^{-}{ }_{1}\right) \sim 7.3$.
2^{+}level systematics of $\mathrm{Ca}, \mathrm{Ti}, \mathrm{Cr}$ and Ni isotopes by ab-initio type shell-model interaction by EKK method

Quantum Phase Transition in Zr isotopes

caused by type II shell evolution

Togashi, Tsunoda, Otsuka et al. 1606.09056v1 [nucl-th]

Model space and Effective interaction

- Effective interaction:

JUN45 + snbg3 $+V_{\text {MU }}$
known effective interactions

+ minor fit for a part of T=1 TBME's

Nucleons are excited fully within this model space (no truncation)

${ }^{56} \mathrm{Ni}$

TNA (†wo-nucleon amplitude)

Summary

1. Magic structure can be studied further (better) from the viewpoint of wave functions by the help of spectroscopic factors.
2. For example, ${ }^{52} \mathrm{Ca}$ and ${ }^{54} \mathrm{Ca}$ are equally magic, although the 2^{+}level is lower in the latter. (An exercise of the tensor force.)
3. ${ }^{68} \mathrm{Ni}$ is more spherical than ${ }^{78} \mathrm{Ni}$, whereas ${ }^{78} \mathrm{Ni}$ shows higher magic index than ${ }^{68} \mathrm{Ni}$.
4. TNA can be very interesting in ${ }^{96} \mathrm{Zr}-{ }^{98} \mathrm{Zr}-{ }^{100} \mathrm{Zr}$, because of the abrupt change, i.e., the quantum phase transition.

Collaborators

- Yusuke Tsunoda (CNS, Tokyo)
- Tomoaki Togashi (CNS, Tokyo)
- Naofumi Tsunoda (CNS, Tokyo)
- Noritaka Shimuzu (CNS, Tokyo)
- Yutaka Utsuno (JAEA)
- Kazuo Takayanagi (Sophia Univ.)
- Toshio Suzuki (Nihon Univ.)
- Morten Hjorth-Jensen (MSU/Oslo)

