Island of Inversion by microscopically derived shellmodel Hamiltonian

Naofumi Tsunoda

Center for Nuclear Study, the University of Tokyo
2016/07/12, DREB2016, Halifax

Neutron-rich nuclei~ island of inversion

large shell gap

Ne

breaking of

 shell gap

- $\mathrm{E}(2+) \sim 1 \mathrm{MeV}$ on $\mathrm{N}=20$ indicate breaking of major shell gap
- Unified treatment beyond and below the N=20 gap is necessary
- Two-major shell degrees of freedom is essential

Microscopically derived Hamiltonian

Nuclear force
in free space

Effective nuclear force

 for model spaceMany body
perturbation theory

Shell model Hamiltonian

- Single particle energies
- Two-body matrix elements
- in many cases empirically constructed
R. Machleidt and D. R. Entem, arXiv nucl-th, (2011).

Many-body perturbation theory

P: model space

As non-perturbative correction, we further include infinite repetition of Q-box
non-perturbative correction

Divergent problem and EKK method

Ex: core-polarization diagram

$(\mathrm{D} 1-\mathrm{D} 2)=(2+2) \mathrm{hw}-(2-1+3) \mathrm{hw}=0 \mathrm{hw}$
-> diverges with naive petrubation theory

KK method

$$
\left.V_{\mathrm{eff}}^{(n)}=\hat{Q}\left(\epsilon_{0}\right)+\sum_{k=1}^{\infty} \hat{Q}_{k}\left(\epsilon_{0}\right)_{\mathrm{eff}}^{(n-1)}\right\}^{k}
$$

then, we introduce EKK method to avoid unwanted divergence with re-summation

$$
\frac{V_{a h, c p} V_{p b, h d}}{E_{c}-\epsilon_{c}-\epsilon_{b}-\epsilon_{p}+\epsilon_{h}}
$$

EKK method

$$
\tilde{H}_{\mathrm{eff}}^{(n)}=\tilde{H}_{\mathrm{BH}}(E)+\sum_{k=1}^{\infty} \hat{Q}_{k}(E)\left\{\tilde{H}_{\mathrm{eff}}^{(n-1)}\right\}^{k}
$$

3N interaction (Δ-hole interaction)

- Adding up effective 2 N interaction derived from 3 N interaction to EKK 2N effective interaction [1]
- This is one of the lowest order interaction from 3N force and for higher order we are working on...
[1] T. Otsuka, T. Suzuki, J. D. Holt, A. Schwenk, and Y. Akaishi, Phys. Rev. Lett. 105, 032501 (2010).

Microscopically derived Hamiltonian vs empirical Hamiltonian

Example	EKK+3N(multi-shell), In-medium SRG(single- shell)	Empirical					
USD, GXPF 1, KB3, sdpf-MU, sdpf-U-mix, etc.							
Reproducetion of the known data	Good	Very good	$	$	Theoretical meaning	Clear	Sometimes not clear
:---:	:---:	:---:					
\# of parameters	Only a few practical parameters	Basically the same as number of matrix					

\# of matrix elements in sdpf-shell: 2116
It is generally difficult to fit the matrix elements empirically by hand!

Island of inversion by microscopically derived Hamiltonian

Ground state energies and dripline

- Experimental ground state energies are well reproduced
- Contribution of 3N force is significant in neutron-rich nuclei
- Combination of Microscopic theory and Large scale calc.

$E(2+, 4+)$ and $B(E 2)$

Effective charges (ep,en) $=(1.25,0.25)$

Clear indication of breaking of $\mathrm{N}=20$ gap for Ne and Mg .
$\mathrm{N}=20$ gap remains in Si case.

ESPEs

- Both neutron and proton gap is appearing when $Z=14$
- Proton-neutron force drive the $N=20$ gap at $Z=14$
- at $Z=20, f 7 / 2$ and p3/2 levels are consistent with empirical pf-shell interactions (gxpf1a, KB3 etc.)

31 Mg

(a) EXP.
(b) $\mathrm{EKK}+3 \mathrm{~N}$
(c) sdpf-m
(d) sdpf-U-mix
(e) $\mathrm{AMD}+\mathrm{GCM}$

points

- onset of island of inversion
- ordering of levels reproduced
- mixing of different np-nh contribution
ex) 1/2+ Ohw: 2\% 2hw: 66\% 4hw: 30\% 6hw: 2\% 3/2- 1hw: 33\% 3hw: 56\% 5hw: 11\%

Summary and conclusion

- The physics in island of inversion is well described by microscopically derived effective Hamiltonian
- Ground state energies, $\mathrm{E}(2+, 4+)$, $\mathrm{B}(\mathrm{E} 2)$ of even-even nuclei, positive and negative party states of 31 Mg
- MBPT is the theory to construct the effective Hamiltonian starting from nuclear force.
- EKK method is introduced to derive the effective interaction for the shell model which is applicable to multi-shell system.
- EKK and 3N combination is the powerful tool to explore the wide area of the nuclear chart

Collaborators

- Takaharu Otsuka (Univ. Tokyo)
- Noritaka Shimizu (CNS)
- Sota Yoshida (Univ. Tokyo)
- Kazuo Takayanagi (Sofia Univ.)
- Toshio Suzuki (Nihon Univ.)
- Morten Hjorth-Jensen (Oslo Univ.)

