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Shell model Hamiltonian

Chapter 2

Review of effective interaction for the shell
model

In this chapter, we review the various theories of the effective interaction of the nuclear force, focusing
on the renormalization scheme related to the effective interaction for the shell model.

Nuclear shell model is a configuration interaction method, which is based on usually two-body
interactions and single-particle energies.

Nuclear shell model starts from the following second quantized Hamiltonian,

H =
∑

i

ϵia†i ai +
∑

i jkl

Vi j,kl a†i a†jalak. (2.1)

The input parameter is the single particle energies ϵi and the two-body interactions Vi j,kl. Then, we
calculate the Hamiltonian of many-body states, and diagonalize it to obtain the eigenenergies and the
wave functions.

The creation (annihilation) operators create (annihilate) the nucleons in some discrete orbits. Usu-
ally, these orbits are defined as the eigenfunctions of the harmonic oscillator or the Woods-Saxon
potential, for example. Nuclei have several tens of nucleons typically, which usually give rise to in-
tractably large dimensions. Therefore we have to restrict ourselves to the finite small dimension, to
diagonalize the Hamiltonian matrices. We define a subspace of whole Hilbert space which is called
the model space, where the nucleons can move inside. We also in many cases consider a frozen-core
states like 16O, whose degrees of freedom are killed. As an approximation, the particles are assumed
to move only outside of the core, because these degrees of freedom are enough to explain many
part of the properties of the nuclei heavier than the core. This assumption enlarges the region of the
calculation drastically as well.

Therefore, we have to determine the suitable parameter ϵi and Vi j,kl appropriate to relevant degrees
of freedom. Once we have a reliable Hamiltonian, we can calculate the Hamiltonian of many-body
states and diagonalize it, to obtain the binding energies, wave functions, the strength of the transitions
and the other various useful physical quantities. These parameters are often called effective interaction
for the shell model calculations.
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Figure 1: Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and dashed lines pions. Small
dots, large solid dots, solid squares, and solid diamonds denote vertices of index � = 0, 1, 2, and 4,
respectively. Further explanations are given in the text.

the increased number of contact terms, a quantitative description of the two-nucleon interaction up to about
300 MeV lab. energy is possible, at N3LO (for details, see below). Besides further 3NF, four-nucleon forces
(4NF) start at this order. Since the leading order 4NF come into existence one order higher than the leading
3NF, 4NF are weaker than 3NF. Thus, ChPT provides a straightforward explanation for the empirically
known fact that 2NF � 3NF � 4NF . . . .

4 The nucleon-nucleon interaction

4.1 Definition of the chiral NN potential

The previous section has provided us with an overview. In this section, we will now discuss the NN
interaction in more detail. In terms of naive dimensional analysis or “Weinberg counting”, the various
orders of the irreducible graphs which define the chiral NN potential are given by:

VLO = V (0)
ct + V (0)

1⇡ (8)

VNLO = VLO + V (2)
ct + V (2)

1⇡ + V (2)
2⇡ (9)

VNNLO = VNLO + V (3)
1⇡ + V (3)

2⇡ (10)

VN3LO = VNNLO + V (4)
ct + V (4)

1⇡ + V (4)
2⇡ + V (4)

3⇡ (11)
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the same time, the eigenvalue Ei in Eq. (2.56) changes its meaning; it is no longer the total energy of
the system, but is now the total energy measured from the true ground state energy of the core.

In actual calculations, however, we do not calculate Veff order by order using Eq. (2.86). Since
the contribution of folded diagrams can be calculated by energy derivatives when the model space is
degenerate [11], we can translate Eq. (2.86) into the following equation

Veff = Q̂(ϵ0) +
∞∑

k=1

Q̂k(ϵ0){Veff}k, (2.87)

The above expression clearly shows that the iterative solution of Eq. (2.46) converges Veff in the limit
of n→ ∞.

We can summarize the KK method as follows; we calculate the valence-linked Q̂-box diagrams
(usually up to second or third order) and the corresponding energy derivatives at the degenerate P-
space energy ϵ0, and carry out the iteration of Eq. (2.46) starting from V (0)

eff = V . This procedure
ultimately gives Veff = V (∞)

eff .

Figure 2.3: Valence-linked Q̂-box diagrams up to second order in V .

At the end, we stress again that the above KK method can yield Veff only for a degenerate model
space. Suppose we are working with the harmonic oscillator shell model of 18O, treating 16O as the
core. If we take the P-space composed only of the degenerate sd-shell, the above KK method works
well as shown by many applications (see for example Ref. [26]). If, on the other hand, we take an

+ …+
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For the further decomposition, we introduce two things. One is Q̂-box and the other is folded
diagrams. The Q̂-box is defined as

Q̂(E) = PVP + PVQ
1

E − QHQ
QVP

= PVP + PVQ
1

E − QH0Q
QVP + PVQ

1
E − QH0Q

QVQ
1

E − QH0Q
QVP + · · · (2.71)

which is already appeared in the formal theory of KK method and LS method. The Q̂-box is the
summation of all the contribution of the “irreducible” diagrams. Here the term “irreducible” means
that the diagrams cannot be divided into two pieces by cutting the P-space state by a horizontal line.
Therefore, in the evaluation of Q̂-box, we do not face to the divergence caused by the zero energy-
denominator, if the P-space is degenerate and the unperturbed Q-space energy is different from that
of P-space.

Next, we move to the folded diagrams. Let us consider the diagram which includes two vertices
at t = t1 and t = t2, with t1 > t2. When the state before t = t2 and after t = t2 are the same, clearly we
face to the zero denominator. This divergence can be factorized as follows:

❝❝t1
t2

= ❝t1 × ❝t2 − ❝t1

❝t2
!
! . (2.72)

In the left hand side, 0 > t1 > t2, and in the right hand side, the first term does not have the restriction
of ordering and the second term is the corresponding subtraction of 0 > t2 > t1. Suppose the railed line
is in Q-space and the other is in P-space. Since P-space is degenerate, the left hand side is obviously
divergent. In the right hand side, the divergence is only appearing in the second factor in the first
term. In this sense, Eq. (2.72) shows the minimal example of factorization of the divergence. Our
purpose of implement the factorization theorem and folded diagram procedure is that we factorize the
divergence and cancel them so that we obtain the finite physical results.

Now we come back to the factorization of Eq. (2.70). Both the first and second term include the
divergence. The first term |χP⟩, which terminate at t = 0 as P-space state, is expressed as

|χP⟩ = + ✉ + ✉✉ + ✉✉✉ + · · · (2.73)

where filled circle represent the Q̂-box and the line is the two-body states within P-space. Since we
are considering of degenerate P-space, this leads a clear divergence. On the other hand, the second
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condition, the following solution need the condition of degenerate unperturbed eigenvalues in P-
space. We first explain the KK method [27] for the degenerate model space. Then we explain the
LS method [28] for the degenerate model space. Both methods eliminate the energy-dependence of
HBH(E) of Eq. (2.27) by introducing the so-called Q̂-box and its energy derivatives, resulting in an
energy-independent effective interaction Heff .

2.3.1 Kuo-Krenciglowa (KK) method

In the KK method, we assume a degenerate model space,

PH0P = ϵ0P. (2.41)

Then Eq. (2.34) reads

(ϵ0 − QHQ)ω = QVP − ωPVP − ωPVQω. (2.42)

The KK method provide us a one possible way to solve this decoupling equation. Multiplying (ϵ0 −
QHQ) from the left,

ω =
1

ϵ0 − QHQ
(QVP − ω (PVP + PVQω))

=
1

ϵ0 − QHQ
(QVP − ωVeff) , (2.43)

using the expression of Veff in Eq. (2.36). Then we obtain the the following iterative form:

ω(n) =
1

ϵ0 − QHQ

(
QVP − ω(n)V (n−1)

eff

)
, (2.44)

where ω(n) and V (n)
eff = PVP + PVQω(n) stand for ω and Veff in the n-th step, respectively.

Now we introduce the important operator called Q̂-box as follows:

Q̂(E) = PVP + PVQ
1

E − QHQ
QVP,

Q̂k(E) =
1
k!

dkQ̂(E)
dEk . (2.45)

The Q̂-box is clearly defined as an operator act in P-space. Intuitively this quantity stands for the
interacting matrix which the P-space wavefunction having energy E makes excited to Q-space, and
propagate in Q-space, and then makes it back to P-space again.

Then we immediately arrive at the following iterative formula for V (n)
eff :

V (n)
eff = Q̂(ϵ0) +

∞∑

k=1

Q̂k(ϵ0){V (n−1)
eff }k. (2.46)

In the limit of n → ∞, Eq. (2.46) gives Veff = V (∞)
eff , if the iteration converges. The first term of

Eq. (2.46) is Q̂-box itself, which means the effective interaction include the effect of virtual excitation
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As non-perturbative correction, we further include infinite 
repetition of Q-box
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term |χQ⟩, which terminate as Q-space at t = 0, is written as follows,

|χQ⟩ = ✉ + ✉✉ + ✉✉✉ + · · ·

=
( ✉ − ✉ ∫ ✉ + ✉ ∫ ✉ ∫ ✉ − · · · ) (2.74)

×
(

+ ✉ + ✉✉ + ✉✉✉ + · · ·
)

where integral represent the folding procedure. The folded diagrams here is defined as the contribution
of the end of the former Q̂-box is placed after the beginning latter Q̂-box. Note that the second factor
is the exactly |χP⟩. Equivalently we can write down the above as follows,

UV(0,−∞)|ψα⟩ =
D∑

β=1

UVQ(0,−∞)|ψβ⟩⟨ψβ|UV(0,−∞)|ψα⟩. (2.75)

where UVQ represent the contributions of the first factor in Eq. (2.74). The point is that the divergence
is only appearing in the second factor in Eq. (2.75).

Combining Eqs. (2.68), (2.70), (2.74), (2.75) together,

U(0,−∞)|ψα⟩ = UQ(0,−∞)|c⟩⟨c|U(0,−∞)|c⟩ ×
d∑

β=1

UVQ(0,−∞)|ψβ⟩⟨ψβ|UV(0,−∞)|ψα⟩ (2.76)

Then, Eq. (2.67) reads,

d∑

γ=1

bλγHUQ(0,−∞)|c⟩UVQ(0,−∞)|ψγ⟩ =
d∑

δ=1

bλδEλUQ(0,−∞)|c⟩UVQ(0,−∞)|ψγ⟩ (2.77)

where b(λ)
γ is defined as

b(λ)
γ =

d∑

α=1

C(λ)
α

⟨ψγ|UV(0,−∞)|ψα⟩⟨c|U(0,−∞)|c⟩
⟨ρλ|U(0,−∞)|ρλ⟩

(2.78)

Note that there are divergence in the numerator and the denominator and they are canceled out. Then,
the coefficient b(λ)

γ is finite.
Now we define an operator UL as follows,

UL(0,−∞)|ψα⟩ ≡ UVQ(0,−∞)|ψα⟩UQ(0,−∞)|c⟩, (2.79)

meaning that the contribution is linked diagrams.
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1

E − QH0Q
QVP + PVQ

1
E − QH0Q

QVQ
1

E − QH0Q
QVP + · · · (2.71)

which is already appeared in the formal theory of KK method and LS method. The Q̂-box is the
summation of all the contribution of the “irreducible” diagrams. Here the term “irreducible” means
that the diagrams cannot be divided into two pieces by cutting the P-space state by a horizontal line.
Therefore, in the evaluation of Q̂-box, we do not face to the divergence caused by the zero energy-
denominator, if the P-space is degenerate and the unperturbed Q-space energy is different from that
of P-space.

Next, we move to the folded diagrams. Let us consider the diagram which includes two vertices
at t = t1 and t = t2, with t1 > t2. When the state before t = t2 and after t = t2 are the same, clearly we
face to the zero denominator. This divergence can be factorized as follows:

❝❝t1
t2

= ❝t1 × ❝t2 − ❝t1

❝t2
!
! . (2.72)

In the left hand side, 0 > t1 > t2, and in the right hand side, the first term does not have the restriction
of ordering and the second term is the corresponding subtraction of 0 > t2 > t1. Suppose the railed line
is in Q-space and the other is in P-space. Since P-space is degenerate, the left hand side is obviously
divergent. In the right hand side, the divergence is only appearing in the second factor in the first
term. In this sense, Eq. (2.72) shows the minimal example of factorization of the divergence. Our
purpose of implement the factorization theorem and folded diagram procedure is that we factorize the
divergence and cancel them so that we obtain the finite physical results.

Now we come back to the factorization of Eq. (2.70). Both the first and second term include the
divergence. The first term |χP⟩, which terminate at t = 0 as P-space state, is expressed as

|χP⟩ = + ✉ + ✉✉ + ✉✉✉ + · · · (2.73)

where filled circle represent the Q̂-box and the line is the two-body states within P-space. Since we
are considering of degenerate P-space, this leads a clear divergence. On the other hand, the second

some algebra…
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term |χQ⟩, which terminate as Q-space at t = 0, is written as follows,

|χQ⟩ = ✉ + ✉✉ + ✉✉✉ + · · ·

=
( ✉ − ✉ ∫ ✉ + ✉ ∫ ✉ ∫ ✉ − · · · ) (2.74)

×
(

+ ✉ + ✉✉ + ✉✉✉ + · · ·
)

where integral represent the folding procedure. The folded diagrams here is defined as the contribution
of the end of the former Q̂-box is placed after the beginning latter Q̂-box. Note that the second factor
is the exactly |χP⟩. Equivalently we can write down the above as follows,

UV(0,−∞)|ψα⟩ =
D∑

β=1

UVQ(0,−∞)|ψβ⟩⟨ψβ|UV(0,−∞)|ψα⟩. (2.75)

where UVQ represent the contributions of the first factor in Eq. (2.74). The point is that the divergence
is only appearing in the second factor in Eq. (2.75).

Combining Eqs. (2.68), (2.70), (2.74), (2.75) together,

U(0,−∞)|ψα⟩ = UQ(0,−∞)|c⟩⟨c|U(0,−∞)|c⟩ ×
d∑

β=1

UVQ(0,−∞)|ψβ⟩⟨ψβ|UV(0,−∞)|ψα⟩ (2.76)

Then, Eq. (2.67) reads,

d∑

γ=1

bλγHUQ(0,−∞)|c⟩UVQ(0,−∞)|ψγ⟩ =
d∑

δ=1

bλδEλUQ(0,−∞)|c⟩UVQ(0,−∞)|ψγ⟩ (2.77)

where b(λ)
γ is defined as

b(λ)
γ =

d∑

α=1

C(λ)
α

⟨ψγ|UV(0,−∞)|ψα⟩⟨c|U(0,−∞)|c⟩
⟨ρλ|U(0,−∞)|ρλ⟩

(2.78)

Note that there are divergence in the numerator and the denominator and they are canceled out. Then,
the coefficient b(λ)

γ is finite.
Now we define an operator UL as follows,

UL(0,−∞)|ψα⟩ ≡ UVQ(0,−∞)|ψα⟩UQ(0,−∞)|c⟩, (2.79)

meaning that the contribution is linked diagrams.

:Q-box

non-perturbative correction

Kuo-Krenciglowa method
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given schematically by

Q̂(E) =
∏ V

E − (
∑
ϵa +

∑
ϵp −

∑
ϵh)int
, (3.20)

where the subscript int indicates intermediate states between two interaction vertices. Note that the
parameter E appears in all the denominators in the EKK method.

To make our diagram rules clear, let us see an example. The diagram shown in Fig. 3.2 is a

Figure 3.2: Core-polarization diagram as a second-order contribution to the Q̂-box. The energy de-
nominator is written as D1 and D2.

member of Q̂-box diagram. The diagram is a contribution from the second-order term in Eq. (2.71).
The energy denominator for the lower dashed line is denoted as D1 and for the intermediate state we
use D2, and the energy denominator of this diagram should be calculated as D1 − D2. Therefore, it
gives the following contribution to Q̂(E)

Fig. 3.2 (EKK)→ Vah,cpVpb,hd

E − ϵc − ϵb − ϵp + ϵh
. (3.21)

If we on the other hand employ the KK method in order to calculate the contribution to Q̂(ϵ0) from
Fig. 3.2, we would get

Fig. 3.2 (KK) → Vah,cpVpb,hd

(ϵc + ϵd) − ϵc − ϵp + ϵh − ϵb

=
Vah,cpVpb,hd

−ϵp + ϵh
(3.22)

where, in going to the second line, we have used the fact that the P-space is degenerate, and therefore
ϵa = ϵb = ϵc = ϵd and ϵc + ϵd = ϵ0.

Two points should be noted from the above example; first, in a degenerate model space, the EKK
result Eq. (3.21) with E = ϵ0 coincides with the KK result Eq. (3.22). This is a direct consequence
of the fact that the EKK formula contains the KK formula as a special case. Second, we can see the
problem of divergence of the KK formula applied naively to a non-degenerate model space. Consider
the case of 18O as an example, and let the P-space consist of two major shells (1s0d and 1p0 f -shells).
The single particle states are taken as the eigenstates of harmonic oscillator potential. Then, the
denominator of the first line in Eq. (3.22) vanishes for b, c, p ∈ 1s0d-shell, a, d ∈ 1p0 f -shell, and
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condition, the following solution need the condition of degenerate unperturbed eigenvalues in P-
space. We first explain the KK method [27] for the degenerate model space. Then we explain the
LS method [28] for the degenerate model space. Both methods eliminate the energy-dependence of
HBH(E) of Eq. (2.27) by introducing the so-called Q̂-box and its energy derivatives, resulting in an
energy-independent effective interaction Heff .

2.3.1 Kuo-Krenciglowa (KK) method

In the KK method, we assume a degenerate model space,

PH0P = ϵ0P. (2.41)

Then Eq. (2.34) reads

(ϵ0 − QHQ)ω = QVP − ωPVP − ωPVQω. (2.42)

The KK method provide us a one possible way to solve this decoupling equation. Multiplying (ϵ0 −
QHQ) from the left,

ω =
1

ϵ0 − QHQ
(QVP − ω (PVP + PVQω))

=
1

ϵ0 − QHQ
(QVP − ωVeff) , (2.43)

using the expression of Veff in Eq. (2.36). Then we obtain the the following iterative form:

ω(n) =
1

ϵ0 − QHQ

(
QVP − ω(n)V (n−1)

eff

)
, (2.44)

where ω(n) and V (n)
eff = PVP + PVQω(n) stand for ω and Veff in the n-th step, respectively.

Now we introduce the important operator called Q̂-box as follows:

Q̂(E) = PVP + PVQ
1

E − QHQ
QVP,

Q̂k(E) =
1
k!

dkQ̂(E)
dEk . (2.45)

The Q̂-box is clearly defined as an operator act in P-space. Intuitively this quantity stands for the
interacting matrix which the P-space wavefunction having energy E makes excited to Q-space, and
propagate in Q-space, and then makes it back to P-space again.

Then we immediately arrive at the following iterative formula for V (n)
eff :

V (n)
eff = Q̂(ϵ0) +

∞∑

k=1

Q̂k(ϵ0){V (n−1)
eff }k. (2.46)

In the limit of n → ∞, Eq. (2.46) gives Veff = V (∞)
eff , if the iteration converges. The first term of

Eq. (2.46) is Q̂-box itself, which means the effective interaction include the effect of virtual excitation
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Then we impose the decoupling condition for the transformed HamiltonianH ,

0 = QHP = QVP − ωPHP + QHQω − ωPVQω, (3.3)

which decouples the P-space Schrödinger equation to Q-space.
Now we rewrite Eq. (3.3) as

(E − QHQ)ω = QVP − ωPH̃P − ωPVQω, (3.4)

where
H̃ = H − E (3.5)

is a shifted Hamiltonian obtained by the introduction of the energy parameter E. Equation (3.4) plays
the same role in the EKK method as Eq. (2.42) does in the KK method. The difference is that we
introduce a parameter E and replace PVP by PH̃P. By solving Eq. (3.4) iteratively as in the KK
method, we obtain the following iterative scheme to calculate the effective Hamiltonian Heff instead
of Veff ,

H̃(n)
eff = H̃BH(E) +

∞∑

k=1

Q̂k(E){H̃(n−1)
eff }k, (3.6)

where
H̃eff = Heff − E, H̃BH(E) = HBH(E) − E, (3.7)

and H̃(n)
eff stands for H̃eff at the n-th step. The effective Hamiltonian Heff is obtained as Heff = H(∞)

eff , and
satisfies

H̃eff = H̃BH(E) +
∞∑

k=1

Q̂k(E){H̃eff}k. (3.8)

The effective interaction, Veff, is then calculated by Eq. (2.36) as Veff = Heff − PH0P. Here the
definition of Q̂-box is the same as KK method, that is,

Q̂(E) = PVP + PVQ
1

E − QHQ
QVP, (3.9)

and the derivative of Q̂-box is

Q̂k(E) =
1
k!

dkQ̂(E)
dEk . (3.10)

Let us now compare the EKK and the KK methods. First, and most importantly, the above EKK
method does not require that the model space is degenerate. It can, therefore, be applied naturally to
a valence space composed of several shells. Second, Eq. (3.6) changes H̃eff , while Eq. (2.46) changes
only Veff at each step of the iterative process. Third, in order to perform the iterative step of Eq. (3.6),
we need to calculate Q̂k(E) at the arbitrarily specified energy E, instead of at ϵ0 for Eq. (2.46).

Equation (3.8) is interpreted as the Taylor series expansion of H̃eff around H̃BH(E), and changing E
corresponds to shifting the origin of the expansion, and therefore to a re-summation of the series. This
explains why the left hand side of Eq. (3.8) is independent of E, while each term on the right hand
side depends on E. This in turn means that we can tune the parameter E in Eq. (3.8) to accelerate the
convergence of the series on the right hand side, a feature which we will exploit in actual calculations.
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3hw
2hw 1hw

(D1-D2) = (2+2)hw-(2-1+3)hw = 0hw

Ex: core-polarization diagram

-> diverges with naive 
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given schematically by

Q̂(E) =
∏ V

E − (
∑
ϵa +

∑
ϵp −

∑
ϵh)int
, (3.20)

where the subscript int indicates intermediate states between two interaction vertices. Note that the
parameter E appears in all the denominators in the EKK method.

To make our diagram rules clear, let us see an example. The diagram shown in Fig. 3.2 is a

Figure 3.2: Core-polarization diagram as a second-order contribution to the Q̂-box. The energy de-
nominator is written as D1 and D2.

member of Q̂-box diagram. The diagram is a contribution from the second-order term in Eq. (2.71).
The energy denominator for the lower dashed line is denoted as D1 and for the intermediate state we
use D2, and the energy denominator of this diagram should be calculated as D1 − D2. Therefore, it
gives the following contribution to Q̂(E)

Fig. 3.2 (EKK)→ Vah,cpVpb,hd

E − ϵc − ϵb − ϵp + ϵh
. (3.21)

If we on the other hand employ the KK method in order to calculate the contribution to Q̂(ϵ0) from
Fig. 3.2, we would get

Fig. 3.2 (KK) → Vah,cpVpb,hd

(ϵc + ϵd) − ϵc − ϵp + ϵh − ϵb

=
Vah,cpVpb,hd

−ϵp + ϵh
(3.22)

where, in going to the second line, we have used the fact that the P-space is degenerate, and therefore
ϵa = ϵb = ϵc = ϵd and ϵc + ϵd = ϵ0.

Two points should be noted from the above example; first, in a degenerate model space, the EKK
result Eq. (3.21) with E = ϵ0 coincides with the KK result Eq. (3.22). This is a direct consequence
of the fact that the EKK formula contains the KK formula as a special case. Second, we can see the
problem of divergence of the KK formula applied naively to a non-degenerate model space. Consider
the case of 18O as an example, and let the P-space consist of two major shells (1s0d and 1p0 f -shells).
The single particle states are taken as the eigenstates of harmonic oscillator potential. Then, the
denominator of the first line in Eq. (3.22) vanishes for b, c, p ∈ 1s0d-shell, a, d ∈ 1p0 f -shell, and
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Fujita-Miyazawa three-body force
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Virtual excitation to the ∆(1232): lowest excited
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exchange π meson two times
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energies affected by the Pauli’s

exclusion principle in nuclear

medium

This effect is included automatically
if we consider exchange diagram
(Delta-hole diagram)

→ effective two-body force

→ we call this effective twobody force comes from ∆ hole diagram
FM-twobody force
we calculate the multipole of FM-twobody force in T = 1 channel
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Adding up effective 2N interaction derived from 3N 
interaction to EKK 2N effective interaction [1] 
This is one of the lowest order interaction from 3N force 
and for higher order we are working on…

Fujita-Miyazawa type 
3N interaction

Effective 
2N interaction

summation with hole state

[1] T. Otsuka, T. Suzuki, J. D. Holt, A. Schwenk, and Y. Akaishi, Phys. Rev. Lett. 105, 032501 (2010).
 6

3N interaction (Δ-hole interaction)
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main contribution of 3N



 7

Microscopically derived Hamiltonian vs empirical Hamiltonian
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Microscopic Empirical

Example
EKK+3N(multi-shell), 
In-medium SRG(single-

shell)

USD, GXPF1, KB3, 
sdpf-MU, sdpf-U-mix, 

etc.
Reproducetion of the 

known data Good Very good

Theoretical meaning Clear Sometimes not clear

# of parameters Only a few practical 
parameters

Basically the same as 
number of matrix 

elements
# of matrix elements in sdpf-shell: 2116 
It is generally difficult to fit the matrix elements empirically by 
hand !
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Island of inversion by microscopically derived 
Hamiltonian



8 14 16 20 28 40
N

-300

-250

-200

-150

-100

-50

E
n
er

g
y
 (

M
eV

)

Ne

Mg

Si

EXP.
CALC. w 3NF
CALC. w/o 3NF

Ground state energies and dripline

 9IOI by microscopic HamiltonianNaofumi Tsunoda (CNS UT) /14

Experimental ground state energies are well reproduced 
Contribution of 3N force is significant in neutron-rich nuclei 
Combination of Microscopic theory and Large scale calc.
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E(2+,4+) and B(E2)
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Effective charges 
(ep,en)=(1.25, 0.25)

Clear indication of 
breaking of N=20 
gap for Ne and Mg.

N=20 gap remains in 
Si case.
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Both neutron and proton gap is appearing when Z=14 
Proton-neutron force drive the N=20 gap at Z=14 
at Z=20, f7/2 and p3/2 levels are consistent with empirical 
pf-shell interactions (gxpf1a, KB3 etc.)
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The physics in island of inversion is well described by 
microscopically derived effective Hamiltonian 

Ground state energies, E(2+,4+), B(E2) of even-even 
nuclei, positive and negative party states of 31Mg 

MBPT is the theory to construct the effective Hamiltonian 
starting from nuclear force. 

EKK method is introduced to derive the effective interaction 
for the shell model which is applicable to multi-shell system. 

EKK and 3N combination is the powerful tool to explore the 
wide area of the nuclear chart
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Summary and conclusion
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