

Quasi-free proton knockout reactions of ^{23,25}F

T. L. Tang, S. Kawase¹, T. Uesaka², D. Beaumel^{2,3}, M. Dozono², T. Fujii^{1,2}, N. Fukuda², T. Fukunaga^{2,4}, A. Galindo-Uribarri⁵, S. H. Hwang⁶, N. Inabe², D Kameda², T. Kawahara^{2,7}, W. Kim⁶, K. Kisamori^{1,2}, M. Kobayashi¹, T. Kubo², Y. Kubota^{1,2}, K. Kusaka², C. S. Lee¹, Y. Maeda⁸, H. Matsubara², S. Michimasa¹, H. Miya^{1,2}, T. Noro^{2,4}, A. Obertelli⁹, S. Ota¹, E. Padilla-Rodal¹⁰, S. Sakaguchi^{2,4}, H. Sakai², M. Sasano², S. Shimoura¹, S. S. Stepanyan⁶, H. Suzuki², M. Takaki^{1,2}, H. Takeda², H. Tokieda¹, T. Wakasa^{2,4}, T. Wakui^{2,11}, K. Yako¹, Y. Yanagisawa², J. Yasuda^{2,4}, R. Yokoyama^{1,2}, K. Yoshida², and J. Zenihiro²

Center of Nuclear Study (CNS), University of Tokyo 1,

- RIKEN Nishina Center 2,
- Institut de Physique Nucléaire d'Orsay 3,
- Department of Physics, Kyushu University 4,
 - Oak Ridge National Laboratory 5,
- Department of Physics, Kyungpook National University 6,
 - Department of Physics, Toho University 7,
- Department of Applied Physics, University of Miyazaki 8,
 - CEA Saclay 9,
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México 10,
 - CYRIC, Tohoku University 11.

RCNP

11/7/2016

Different neutron dripline

²⁴O

- How the 1d_{5/2} proton changes the neutron shell structure?
- Proton removal spectroscopy on ^{23,25}F

If neutron-shell does not change

 \rightarrow spectroscopic factor of the ground state of oxygen = 1.

Different neutron dripline

²⁵F

- How the 1d_{5/2} proton changes the neutron shell structure?
- Proton removal spectroscopy on ^{23,25}F

If neutron-shell does not change

 \rightarrow spectroscopic factor of the ground state of oxygen = 1.

Quasi-free (p,2p) knockout

- <u>Cleanest reaction</u>
 - proton is a clean probe
 - − Intermediate energy
 → Direct reaction
- Complete kinematics

$$\mathbb{P}_F + \mathbb{P}_T = \mathbb{P}_1 + \mathbb{P}_2 + \mathbb{P}_0$$

$$s_p(nlj) + m(\mathbb{P}_F) = m(\mathbb{P}_2) + m(\mathbb{P}_F + \mathbb{P}_T - \mathbb{P}_1 - \mathbb{P}_2)$$

f
Effective separation energy
$$\mathbb{P}_O$$

Production ^{23,25}F at ~300A MeV

Experimental Setup

- 😽 🙆 🧩
- Beam Coincidence of two 1. scattered protons. **Drift Chamber** 2. Exclusive measurement. target system MND proton Plastic Residues SHARAQ

Reaction Identification

DREB2016, Halifax, Canada

7

Excitation-energy Spectrum of ²²O

²³F(p,2p)²²O*

Using residue identification

Orbit can be assigned into sd-shell or p-shell.

- (²³F,²²O) is from sd-orbit.
- Mean energy of (²³F,²¹O) is ~ 10 MeV
 - p-orbit should dominate.

Excitation-energy Spectrum of ²⁴O

²⁵F(p,2p)²⁴O*

Using residue identification

Orbit can be assigned into sd-shell or p-shell.

- (²⁵F,²⁴O) is a single peak from 1d_{5/2} orbit.
- (²⁵F,²³O) is from sd-orbit.
- Mean energy of (²⁵F,²²O) is ~ 10 MeV
 - p-orbit should dominate.

Momentum analysis confirms orbits

- <u>Pervious orbit assignments were confirmed</u>.
- There is no significant s-orbit components.
 - Using DWIA calculation.
 - DWIA [N. S. Chant et al., PRC 15 (1977) 57]
 - Dirac-Cooper potential

[E. D. Cooper et al., PRC 47 (1993) 297]

• Spectroscopic factor
$$SF_{exp} = \frac{\sigma_{exp}}{\sigma_{DWIA}}$$

	Orbit	SF _{exp}		
(²³ F, ²² O)	1d _{5/2}	0.37 ± 0.10		
(²⁵ F, ²⁴ O)	1d-r	0.38 ± 0.14	1.07 ± 0.29	
(²⁵ F, ²³ O)	1 4 5/2	0.69 ± 0.25	1.07 - 0.27	

- 1. <u>The ground state SFs are small</u>!!
- 2. The SFs of 1d_{5/2} proton are fragmented!!

Physics is on the neutron side!

Wave function of neutron-rich ²⁵F

$$|^{25}F\rangle_{\frac{5}{2}} \approx \sqrt{0.35} \left[\left| \pi 1 d_{\frac{5}{2}} \right\rangle \right|^{24} O_{g.s.} \right]_{\frac{5}{2}} + \sqrt{0.65} \left[\left| \pi 1 d_{\frac{5}{2}} \right\rangle \right|^{24} O^* \right]_{\frac{5}{2}} + \cdots$$

- The 1d_{5/2} proton modifies the neutron shell
 → neutron configuration mixing increases.
- Indicates the shell gap becomes smaller.
- Disappearance of N = 16 magicity.

Mechanism: <u>Type-I shell evolution</u> driven by tensor force

T. Otuska et al., J. Phys. G: Nucl. Part. Phys. 43 (2016) 024009

Present SM interactions

	Residue	Orbit	SF_{exp}	SF(SFO)	SF(USDB)	SF(SDPF-MU)
²³ F(p,2p)	²² O	1d _{5/2}	0.37 ± 0.10	0.92	1.08	1.00
²⁵ F(p,2p)	²⁴ O	1d _{5/2}	0.38 ± 0.14	0.9	1.01	0.95
	²³ O		0.69 ± 0.25	0.1	-	-
			Model space	p-sd	sd	sd-pf
			Reference	T. Suzuki et al., PRC 67 (2003) 044302	B. A. Brown et al. <i>,</i> PRC 74 (2006) 034315	Y. Utsno et al. <i>,</i> RPC 86 (2012) 051301

- 1. <u>Give almost unity of ground state</u>
- 2. <u>Produce no/little fragmentation.</u>

May be... The tensor force is not strong enough.

 If the 1d_{3/2} orbit lowers by ~3 MeV The SF_{exp} can be reproduced.
 → Indicate a stronger tensor force.

USDB interaction

Summary

- <u>How</u> the neutron shell structure is changed by the $1d_{5/2}$ proton in $^{23,25}F$?
- Using proton spectroscopy of quasi-free ${}^{23,25}F(p,2p)$ knockout reaction
 - Direct Reaction with Exotic Beams (DREB)
 - If neutron shell does not change \rightarrow ground state spectroscopic factor = 1.
- The experimental results show
 - \rightarrow the ground state spectroscopic factor is much smaller than 1.
 - \rightarrow fragmentation of the spectroscopic strength.
 - ^{23,25}F are examples of <u>Type-I shell evolution</u> driven by tensor force.
- The discrepancy between the experimental results and the shell model interactions
 - the strength of <u>the tensor force should be stronger</u>.