Parity-transfer (¹⁶O,¹⁶F(O⁻)) reaction for study of spin-dipole O⁻ mode

Masanori Dozono Center for Nuclear Study, the University of Tokyo

> The 9th international conference on Direct Reactions with Exotic Beams (DREB) 2016

> > July 11-15, 2016, Halifax, Canada

1

Please keep in your minds !!

Exotic beam ⇒ Primary beam
(Outgoing particle is exotic)
Inverse-kinematics ⇒ Normal-kinematics

Parity-transfer (¹⁶O,¹⁶F(O⁻)) reaction for study of spin-dipole O⁻ mode

Masanori Dozono Center for Nuclear Study, the University of Tokyo

> The 9th international conference on Direct Reactions with Exotic Beams (DREB) 2016

> > July 11-15, 2016, Halifax, Canada

Please keep in your minds !!

Exotic beam ⇒ Primary beam
(Outgoing particle is exotic)
Inverse-kinematics ⇒ Normal-kinematics

Parity-transfer (¹⁶O,¹⁶F(O⁻)) reaction for study of spin-dipole O⁻ mode

Masanori Dozono Center for Nuclear Study, the University of Tokyo

> The 9th international conference on Direct Reactions with Exotic Beams (DREB) 2016 Particle (DREP) July 11-15, 2016, Halifax, Canada

Giant resonances and collective modes

- Related to bulk properties of nuclei
- We can lean about nuclear interaction (correlation)

Giant resonances and collective modes

Tensor effects on O⁻ strengths

C. L. Bai, H. Sagawa et al., PRC 83, 054316 (2011); Private communication

- **Results of HF+RPA calc.**
 - Tensor effects
 - O⁻ peak shifts by several MeV
 - Skyrme-type tensor int.
 - Triplet-Even
 - : Constrained by GT data
 - Triplet-Odd : NOT well constrained

$$V^{T} = \frac{T}{2} \left\{ \begin{bmatrix} (\sigma_{1} \cdot \mathbf{k}')(\sigma_{2} \cdot \mathbf{k}') - \frac{1}{3}(\sigma_{1} \cdot \sigma_{2})\mathbf{k}'^{2} \end{bmatrix} \delta(r) \\ + \delta(\mathbf{r}) \begin{bmatrix} (\sigma_{1} \cdot \mathbf{k})(\sigma_{2} \cdot \mathbf{k}) - \frac{1}{3}(\sigma_{1} \cdot \sigma_{2})\mathbf{k}^{2} \end{bmatrix} \right\}$$
Triplet-Even (T)
$$+ \frac{U}{2} \left\{ (\sigma_{1} \cdot \mathbf{k}')\delta(\mathbf{r})(\sigma_{2} \cdot \mathbf{k}) + (\sigma_{2} \cdot \mathbf{k}')\delta(\mathbf{r})(\sigma_{1} \cdot k) \\ - \frac{2}{3} [(\sigma_{1} \cdot \sigma_{2})\mathbf{k}' \cdot \delta(\mathbf{r})\mathbf{k}] \right\}.$$
Triplet-Odd (U)

0⁻ distribution is sensitive to tensor
 ⇒ Exp. data of 0⁻ are important
 to pin down tensor force effects

Experimental studies of O⁻ states

Parity-transfer (¹⁶O,¹⁶F(O⁻)) reaction

Parity-transfer reaction is selective tool for 0-!

- Parity-trans. (160,16F(0-))
 - ¹⁶O (g.s., 0⁺) \rightarrow ¹⁶F (g.s., 0⁻)
- Advantages
 - Selectively excite unnatural-parity states
 - No SD(1-) contribution
 - Single J^{π} for each ΔL_R
 - J^π (0⁻, 1⁺, 2⁻,...) can be assigned by the angular distribution

	∆L _R =0	ΔL _R =1	∆L _R =2	
Parity-trans.	0-	J+	2-	
(p,n),(d, ² He) etc.	0+,1+	0-, 1-, 2-	1+, 2+, 3+	

First parity-transfer measurement : ¹²C(¹⁶O,¹⁶F(O⁻))¹²B at 250 MeV/u

We apply parity-trans. reaction to ¹²C target

- Why ¹²C ?
- <u>Known</u> 0^{-} at $E_x = 9.3$ MeV in ¹²B
 - ⇒ Confirm effectiveness of parity-trans. reaction
- Experimentally more feasible
 - High luminosity,
 - Low B.G. compared with heavier nuclei

¹²C(¹⁶O,¹⁶F(O⁻))¹²B exp. @ RIBF & SHARAQ

- Beam : Primary ¹⁶O
 - 250MeV/u, 10⁷ pps (radiation limit)
 - Dispersive matched beam
- Target : ¹²C
- Segmented plastic scinti.
 (active C target, ~100 mg/cm²)
- Determine beam x-position @ S0 (NOT used in present analysis)
- Coincidence measurement of ¹⁶F -> ¹⁵O + p
- ¹⁵O: 2 LP-MWDCs @ S2
- p:2 MWDCs @ S1
- Invariant-mass of ${}^{15}\text{O}+p \Rightarrow \text{Identify } {}^{16}\text{F(O}-)$
- Missing-mass \Rightarrow Deduce E_x in ¹²B and θ

Identification of ¹⁶F(0⁻)

Relative energy Erel between ¹⁵O + p

¹²C(¹⁶O,¹⁶F(O⁻))¹²B spectra

- (¹⁶O,¹⁶F(O⁻)) data
- $\delta E_x = 2.6 \text{ MeV}$ (FWHM)

- (¹⁶O,¹⁶F(O⁻)) data
- $\delta E_x = 2.6 \text{ MeV}$ (FWHM)
- (d,²He) data [Normalized to 1+ g.s.]

H. Okamura *et al*. PLB 345 (1995) 1.

- 0 MeV : GT(1+)
- 4.4 MeV : <mark>SD(2⁻⁻)</mark>
- 7.5 MeV : SD(1-) or SD(2-) ?
 - No peak in (¹⁶O,¹⁶F(O⁻)) data \Rightarrow SD(1⁻)
 - (¹⁶O,¹⁶F(O⁻⁻)) excites only (--)^{J+1} states
- 9.3 MeV : SD(0⁻⁻)

Selectively excited with good S/N ratio

(¹⁶O,¹⁶F(O^{__})) is clean probe for SD(O^{__}) !

- Enhancement at ~15 MeV
$$\Rightarrow$$
 New SD(0⁻) (

Angular distributions ~ Known states ~

DWBA

•

- Predict different patterns depending on J^{π}
 - 0⁻ has strong forward-peaking
- Reproduce exp. data well

Angular distribution allows clear J^{π} determination !

14

Angular distributions ~ New states ~

 Exp. data are well reproduced by DWBA calc. for SD(0⁻⁻)

> Possible evidence for NEW SD(0⁻⁻) states !

Summary

- We propose parity-transfer reaction (¹⁶O,¹⁶F(O⁻)) for SD(O⁻) study
- To confirm its effectiveness, we applied this reaction to ^{12}C . $\Rightarrow ^{12}C(^{16}O,^{16}F(O))$ at 250A MeV @ RIBF & SHARAQ
- Results
 - (¹⁶O,¹⁶F(O⁻)) is clean probe for SD(O⁻)
 - Selective excitation of ¹²B(9.3 MeV, 0⁻⁻)
 - Angular distribution allows clear J^{π} determination
 - Possible evidence for NEW SD(0⁻⁻) at 6.4 & 14.9 MeV

This is FIRST-STEP study to apply parity-trans. reaction to Collective 0⁻ strengths in heavier nuclei (40 Ca, 90 Zr,…) \Rightarrow Systematic 0⁻ study

Collaborators

•

•

- CNS, University of Tokyo
- S. Shimoura, K. Yako, S. Michimasa, S. Ota, M. Matsushita,
 H. Tokieda, H. Miya, S. Kawase, K. Kisamori, M. Takaki, Y. Kubota,
 C. S. Lee, R. Yokoyama, M. Kobayashi, K. Kobayashi
- **RIKEN Nishina Center**
- T. Uesaka, M. Sasano, J. Zenihiro, H. Sakai, T. Kubo, K. Yoshida, Y. Yanagisawa, N. Fukuda, H. Takeda, N. Inabe, M. Ichimura
- Kyushu University
- T. Wakasa, K. Fujita, S. Sakaguchi, J. Yasuda, A. Ohkura,
 S. Shindo, K. Tabata
- Aizu University
 - H. Sagawa, M. Yamagami

Backup

Comparison with SM calculation (I)

- SM model
 - WBT interaction
 - spsd model space
 - $1h\omega$ excitation
- As a result of configuration mixing between (0p_{3/2}⁻¹0d_{3/2}) and (0s_{1/2}⁻¹0p_{1/2}), B(SD,0⁻⁻) is split into 3 states (7.7, 10.1, 13.0 MeV)
 - Deformation effects ?
 - Tensor effects ?

Our data is roughly consistent with WBT result

Comparison with SM calculation (II)

SM model T. Suzuki *et al.* PRC 74 (2006) 034307

- SFO interaction

•

•

- psd model space
- 3hw excitation
- Only 2 states

To reproduce our data, $(0S_{1/2}^{-1}0p_{1/2})$ is important

Parity-transfer (¹⁶O,¹⁶F(O⁻)) reaction

Parity-transfer reaction is selective tool for SD(0⁻) !

(¹⁶O,¹⁶F) : 0⁺ → 0⁻ α(0+) α(0-) Projectile $\Delta J = 0, \Delta \pi = -$ ↓ ΔL_R Target 0-, 1+, 2-, . . . 0+ $(\Delta L_R=0, 1, 2, ...)$

- Selectively excite (—)^{J+1} states
 ⇒ No SD(1⁻) contribution
- J^π can be assigned
 by angular distribution

(
$$\alpha$$
, α '): 0+ \rightarrow 0+

- Selectively excite (--)^J states
- J^π can be assigned
 by angular distribution

Parity-transfer (¹⁶O,¹⁶F(O⁻)) reaction

Parity-transfer reaction is selective tool for O⁻!

- Parity-trans. (16O,16F(O-))
 - ¹⁶O (g.s., 0⁺) \rightarrow ¹⁶F (g.s., 0⁻)
- Advantages
 - Selectively excite unnatural-parity states
 - No 1⁻ contribution
 - Single J^{π} for each ΔL_R
 - J^{π} (0⁻, 1⁺, 2⁻,...) can be assigned only by the angular distribution ($\Leftrightarrow \Delta L_R$)

	ΔL _R =0	$\Delta L_R=1$	$\Delta L_R=2$	
Parity-trans.	0-	٦+	2-	
(p,n),(d, ² He) etc.	0+,1+	<mark>0</mark> —, 1 ⁻ , 2 ⁻	1+, 2+, 3+	

Clean probe for SD 0⁻ search

Peak fitting

- H peak : Gaussian with exp. tail
- Quasi-free continuum :

 $\frac{d^2\sigma}{d\Omega \, dE} = N \, \frac{1 - \exp[-(E_x - E_0)/T]}{1 + [(E_x - E_{\rm QF})/W_L]^2}, \quad E_x > E_0,$ A. Erell *et al.* PRC 34 (1986) 1822.

- ¹²B states : Gaussian
- 0.0 MeV, GT(1+)
- 4.4 MeV, <mark>SD(2⁻⁻)</mark>
- 9.3 MeV, <mark>SD(0⁻⁻)</mark>
- 6.4 MeV, New
- 14.9 MeV, New

Parity-transfer (¹⁶O,¹⁶F(O⁻)) reaction

Parity-transfer reaction is selective tool for O⁻ ! Parity-trans. (¹⁶O,¹⁶F(O⁻))

Clean probe for SD 0⁻ search

- ¹⁶O (g.s., 0⁺) \rightarrow ¹⁶F (g.s., 0⁻)
- Advantages
 - Selectively excite unnatural-parity states
 - No 1⁻ contribution
 - Single J^{π} for each ΔL_R
 - J^{π} (0⁻, 1⁺, 2⁻,...) can be assigned only by the angular distribution ($\Leftrightarrow \Delta L_R$)

	$\Delta L_R=0$	$\Delta L_R=1$	ΔL _R =2	
Parity-trans.	0-	ן+	2-	
(p,n),(d, ² He) etc.	0+,1+	0-, 1-, 2-	1+, 2+, 3+	

DWBA calculations with FOLD/DWHI

First parity-transfer measurement : ¹²C(¹⁶O,¹⁶F(O⁻))¹²B at 250 MeV/u

We apply parity-trans. reaction to ¹²C target

- Why ¹²C ?
- Known 0⁻⁻ at $E_x = 9.3$ MeV in ¹²B
 - ⇒ Confirm effectiveness of parity-trans. reaction
- Experimentally more feasible
 - High luminosity,
 - Low B.G. compared with heavier nuclei

H. Okamura et al. PRC 66 (2002) 054602

Introduction

•

٠

- Availability of RI beams has made it possible
 - to study the exotic properties of nuclei far from the β -stability line
 - to investigate key nuclear reactions relevant to important astrophysical phenomena
 - **Experimental methods with RI beams**

T. Motobayashi and H. Sakurai, PTEP 2012 (2012) 03C001. Invariant-mass spectroscopy (for unbound states)

(cyclotron)

Invariant-mass measurements at RIKEN/RIPS

Large-accept. SAMURAI spectrometer at RIBF

Designed to perform invariant-mass spectroscopy of both neutron- and proton-unbound states.

High-resolution SHARAQ spectrometer at RIBF

- Maximum rigidity : 6.8 Tm
- Momentum resolution : dp/p = 1/14700
- Angular resolution : ~ 1 mrad
- Momentum acceptance : ±1%
- Angular acceptance : ~5 msr

Not suitable for multi-particle detection . . .

T. Uesaka et al., PTEP 2012 (2012) 03C007. T. Uesaka et al., NIMB 266 (2008) 4218.

S. Michimasa et al., NIMB 317 (2013) 305.

nucleon+HI coincidence measurement with SHARAQ

- Open up new experimental possibilities
 - Invariant-mass measurements with high momentum resolutions
 - PID of heavy isotopes

- Momentum distribution measurements via knockout reactions
- New type of missing-mass spectroscopy using a reaction probe with a particle-decay channel
 - e.g. : Parity-transfer (^{16}O , $^{16}F(O^{-}, g.s.) \rightarrow ^{15}O+p$) reaction
 - Use $0^+ \rightarrow 0^-$ transition to excite a target nucleus
 - Selectively excite unnatural-parity states (0⁻, 1⁺, 2⁻, . . .)

Separated flow mode ~ new ion-optical mode of SHARAQ for in-flight proton-decay experiments~

Separated flow mode of SHARAQ

Proton trajectories from S0 to S1

1st order calc. (COSY)

 $X_{s0}=\{0,\pm1mm\}, Y_{s0}=\{0,\pm1mm\}$ As_0={0,±25mr}, B_{s0}={0,±25mr} $\Delta p/p=\{0,\pm10\%,-10\%\}$

Mom. Reso. :	1/4330
Ang. Reso. :	~2 mrad
Mom. Accept. :	±12%
Ang. Accept. :	2.2 msr

HI trajectories from S0 to S2

1st order calc. (COSY)

 $X_{so}=\{0,\pm1mm\}, Y_{so}=\{0,\pm1mm\}$ Aso= $\{0,\pm20mr\}, B_{so}=\{0,\pm50mr\}$ $\Delta p/p=\{0,\pm1\%,-1\%\}$

or standard mode
1/15300
(1/14700)
<1 mrad
(<1 mrad)
±1%
(±1%)
3.8 msr
(4.8 msr)

lon-optics study with proton beam

Transfer-matrix elements of SO-S1 system

x			а	
$\begin{array}{l} (x x)_{S1} \\ (x a)_{S1} \ [m/rad] \\ (x \delta)_{S1} \ [m] \\ (x aa)_{S1} \ [m/rad^2] \\ (x a\delta)_{S1} \ [m/rad] \\ (x \delta\delta)_{S1} \ [m] \\ (x aaa)_{S1} \ [m/rad^3] \\ (x a\delta\delta)_{S1} \ [m/rad] \\ (x \delta\delta\delta)_{S1} \ [m] \\ (x \delta\delta\delta)_{S1} \ [m] \\ (x a\delta\delta\delta)_{S1} \ [m] \\ (x a\delta\delta\delta)_{S1} \ [m] \\ (x a\delta\delta\delta)_{S1} \ [m] \end{array}$	$\begin{array}{l} -0.34 \pm 0.01 \\ 0.01 \pm 0.01 \\ -1.5703 \pm 0.0002 \\ 0.80 \pm 0.74 \\ 0.40 \pm 0.14 \\ -7.319 \pm 0.001 \\ -820 \pm 31 \\ -57 \pm 1 \\ -29.23 \pm 0.05 \\ -690 \pm 35 \end{array}$	(-0.36) (0.00) (-1.56)	$(a x)_{S1} [rad/m]$ $(a a)_{S1}$ $(a \delta)_{S1} [rad]$ $(a aa)_{S1} [rad^{-1}]$ $(a a\delta)_{S1} [rad^{-1}]$ $(a a\delta\delta)_{S1} [rad]$ $(a a\delta\delta)_{S1} [rad^{-1}]$ $(a \delta\delta\delta)_{S1} [rad]$ $(a \delta\delta\delta)_{S1} [rad]$ $(a aa\delta\delta)_{S1} [rad^{-1}]$	$-1.43 \pm 0.01 \ (-1.53)$ $-3.03 \pm 0.01 \ (-2.75)$ $-0.70 \pm 0.05 \ (-0.75)$ -24.0 ± 0.8 11.5 ± 0.2 1.5 ± 0.2 80 ± 16 -12 ± 4 8 ± 6 910 ± 320

у

$(y y)_{S1}$	-9.55 ± 0.02	(-9.00)
$(y b)_{S1}$ [m/rad]	-4.70 ± 0.05	(-4.50)
$(y ab)_{S1} [m/rad^2]$ $(y y\delta)_{S1}$ $(y b\delta)_{S1} [m/rad]$ $(y ab\delta)_{S1} [m/rad^2]$ $(y b\delta\delta)_{S1} [m/rad]$	-36 ± 3 34.0 ± 0.4 23.5 ± 0.9 231 ± 73 -74 ± 19	

•	1st-order terms are in good
	agreement with design values

 Higher-order terms are too large to be neglected

(¹⁶O,¹⁶F->¹⁵O+p) experiment ~ Performances of separated flow mode ~

($^{16}O, ^{16}F \rightarrow ^{15}O+p$) experiment

- Beam : Primary ¹⁶O
 - 250 MeV/u, 10⁷ pps
 - Dispersion matched beam
 - Target : Plastic scinti.
 - 1 mm thickness

•

- Coincidence measurement of ¹⁶F -> ¹⁵O + p
 - Separated flow mode
 - ¹⁵O: 2 LP-MWDCs @ S2
 - p:2 MWDCs@S1

¹⁶F->¹⁵O+p decay

Kinematics curves are clearly observed

¹⁶F->¹⁵O+p decay

- Relative energy (Erel)
 - $-\delta E_{rel} = 100 \text{ keV}$ (FWHM)
 - @ E_{rel} = 0.54 MeV
 - \Rightarrow Clear separation
 - between ¹⁶F(0⁻,1⁻,2⁻) !

Detection efficiency (ε) (Monte Carlo simulation)

- ε=0.189 @ E_{rel} = 0.54 MeV
- Due to ang. accpt. for proton

(¹⁶O,¹⁶F(2⁻)) reaction

- Kinematic correlation for ¹H(¹⁶O,¹⁶F(2⁻))
- Kinetic energy of ¹⁶F [E(¹⁶F)]
 - $\delta E(^{16}F) = 2.7 \text{ MeV}$ (FWHM)

(Includes energy stragg. in target : ~1.8 MeV)

Reaction Angle (mrad)

10

- \Rightarrow Intrinsic resolution ~2 MeV (FWHM)
- Reaction angle [θ reac]
- $\delta \theta_{\text{reac}} = 2.9 \text{ mrad}$

•

•

 (Includes ang. spread of beam : ~3 mrad)

Comparison with other system

	This work	lwasa et al.	
	THIS WORK	PRL 83 (1999) 2910	
Spectrometer	SHARAQ @ RIBF	KaoS @ GSI	
Beam energy	247 MeV/u	254 MeV/ nucleon	
Measured product	${}^{16}\mathrm{F} \rightarrow {}^{15}\mathrm{O} + p$	${}^{8}B \rightarrow {}^{7}Be + p$	
Relative energy resolution	0.10 MeV at E _{rel} = 0.535 MeV	0.26 MeV at <i>E</i> _{rel} = 0.6 MeV	 ← Better by a factor of ~2.5
Efficiency	0.189 at E _{rel} = 0.535 MeV	\sim 0.8 at $E_{\rm rel} = 0.6 {\rm MeV}$	← Smaller by a factor of ~4
Kinetic energy resolution	2.7 MeV		
Reation angular resolution	2.9 mrad		

SHARAQ + ΔE-E array

•

More efficient measurements may be made possible by combination with a ΔE -E array similar to HiRA

Summary

- Separated flow mode of SHARAQ
 - Use SHARAQ as two spectrometers
 ⇒ Allow coincidence measurements of proton and heavy-ion pairs
 - The transfer-matrix elements were experimentally determined including higher-order terms by using a secondary proton beam
- (¹⁶O,¹⁶F) experiment

•

- High energy resolutions were achieved
 - Relative energy : $\delta E_{rel} = 100 \text{ keV}$ (FWHM) @ $E_{rel}=0.54 \text{ MeV}$
 - Kinetic energy of ${}^{16}F$: $\delta E({}^{16}F)=2.7$ MeV (FWHM) @ $E({}^{16}F)=3940$ MeV

Missing-mass + invariant-mass measurement gives unique opportunities to explore little-studied excitation modes in nuclei using new types of reaction probes with particle-decay channels

