Probing neutron-proton correlation and $\mathbf{3 N}$-force in ${ }^{12} \mathbf{C}$
 Wednesday, 13 fuly 2016 09:55 (15 minutes)

Abstract

Direct observation of neutron-proton (np) correlations and 3N-force in nuclei is the long-sought goal in nuclear physics. Two-nucleon knockout reactions offer a powerful tool as the reaction cross section is a direct probe of nucleon correlations. The experimental data of ${ }^{12} \mathrm{C}$ on a carbon target reveal that the inclusive cross sections of residues from np removal channel $\left({ }^{10} \mathrm{~B}\right)$ is approximately 6-8 times greater than those for nn pair (to ${ }^{10} \mathrm{C}$) and pp pair (to ${ }^{10} \mathrm{Be}$) [1,2], already in excess of the $16 / 6 \approx 2.7$ ratio from simple pair counting in ${ }^{12} \mathrm{C}$. Such enhancement however could not be described by the calculations using eikonal reaction dynamics and microscopic structure from the effective-interaction shell model and the no-core shell model with chiral $\mathrm{NN}+3 \mathrm{~N}$ interactions [3].

To further investigate the nature of nucleon correlations and the origin of discrepancy between the observations and theories, we have performed the first final-state exclusive np-removal cross section measurements using DALI2 gamma-detection array and SAMURAI spectrometer at RIKEN. By the gamma-residue coincidence technique, the partial cross sections to ${ }^{10} \mathrm{~B}$ and ${ }^{10} \mathrm{Be} \mathrm{T}=0$ and $\mathrm{T}=1$ final sates following np and pp removal from ${ }^{12} \mathrm{C}$ at $200 \mathrm{MeV} / \mathrm{u}$ were extracted. The experimental results indicate the insufficient treatment of $\mathrm{T}=0 \mathrm{np}$-correlations and 3 N -force in the current microscopic structure models. In this talk, the experimental setup and the physics results will be discussed.

[1] D. L. Olson et al., Phys. Rev. C. 28, 1602 (1983)
[2] J. M. Kidd et al., Phys. Rev. C. 37, 6 (1988)
[3] E. Simpson P. Navrátil, R. Roth, and J. A. Tostevin, Phys. Rev. C 86, 054609 (2012).

Primary author: Dr LEE, Jenny (The University of Hong Kong)
Presenter: Dr LEE, Jenny (The University of Hong Kong)

Track Classification: Probing the nuclear force through direct reactions

