

Canada's national laboratory for particle and nuclear physics and accelerator-based science

Status of the Vertical UCN Source for the TRIUMF nEDM Experiment

Ryohei Matsumiya (TRIUMF) The TRIUMF Japanese-Canadian Collaboration

nEDM2017 October, 17, 2017, Harrison Hot Springs, Vancouver, BC

- Superthermal UCN production
- The Vertical UCN Source
 - Structure
 - Installation
 - Cooling test
- Schedule for UCN production
- Summary

Superthemal UCN Production

wave number of

scattered n

cold n flux

Scattering

function

Our UCN Source

(1) Vertical UCN Source

Y. Masuda et al., Phys. Rev. Lett. 108 (2012) 134801.

- Developed at RCNP, Japan in 2011
- Shipped to TRIUMF in 2016
- To be driven for a few years at 1µA pbeam current

- Coupled He-II UCN converter with a spallation neutron source
- D_2O as a thermal and cold moderator

Our UCN Source

(1) Vertical UCN Source

Y. Masuda et al., Phys. Rev. Lett. 108 (2012) 134801.

- Developed at RCNP, Japan in 2011
- Shipped to TRIUMF in 2016
- To be driven for a few years at 1µA pbeam current

(2) Next Generation UCN Source

- Under design
- To be designed for 20kW
 (520MeV×40µA) p-beam
- To be designed to achieve 600 UCN/ cm³ in a EDM vessel

Beam line and UCN source at TRIUMF

Major milestones

- ☆ 2014~2016
 ☆ 2016 Fall
 ☆ 2017 Spring
 2017 Nov.
 2020?
- Construction of Beam line 1U
 - Commissioning of the proton beam and CN measurement
- Vertical UCN Source Installation & Cooling test
- UCN Production with the Vertical UCN Source
- Next Generation UCN Source

The Vertical UCN Source

The Vertical UCN Source

The Vertical UCN Source

Development at RCNP, Osaka, Japan

proton beam

- Installation on beam line 1U 13

Cooling test at TRIUMF

- 2017 February GM cooling test
 - After safety upgrade, cooling the cryostat with only GM refrigerator was performed.
 - The cryostat was successfully cooled down to 12K.
 - No leak at low temperature

GM cooling test in Meson hall (not on the beam line)

Installation

The UCN cryostat

300K D2O vessel

Beam line 1U

Graphit blocks (covered with Al foil)

Chimney & Burst disk

Tungsten target 🤇

Installation

Installation

Liquid helium

auto fill system

UCN cryostat

Imr

Installation

Helium-3 gas handling panel

A

DAQ etc.

Liquid helium

auto fill system

UCN cryostat

Installation

³He gas handling panel

DAQ etc.

Liquid helium

auto fill system

He gas handling panel

Installation

Liquid helium auto fill system

<complex-block>

The gas handling panel

Installation

DAQ etc.

Compressors

10

UCN source control and Data taking

UCN source control panel on EPICS Screen

- Most of the devices (valve, pump, pressure gauge, temperature sensor etc) are connected to PLC.
- We can control the devices on EPICS screen.
- Some devices are still controlled manually needle valve, ³He gas handling
- Data (temperature, pressure, pump status) is recorded on MIDAS.

He-II cooling test in April 2017

- Succeeded in condensing He-II in the UCN bottle
- Achieved $T_{He-II} = 0.92K$
- UCN loss by phonon up-scattering in He-II is suppressed enough below 1K
- We can go to next step UCN production

👷 Late 2016 Shipping the source from Japan \therefore Early 2017 (Main shutdown of the Cyclotron) 👷 First cooling test 👷 Installation of the UCN source 👷 2017 April He-II cooling test UCN guide baking at 120 degC 👷 2017 June 👷 2017 July D₂O cooling (next slide) **First UCN Production** 2017 August - Clogging in the ³He circulation line

- Stopped cooling and warmed up the cryostat

D₂O cooling

Temperature [K]

D₂O cooling in July 2017

- Added D₂O every 16 hours. 9 layers of D₂O ice in total to protect the vessel from volume expansion of D₂O
- 100L of D₂O in total became ice in 11 days (300K to 20K).

Shipping the source from Japan 👷 Late 2016 \therefore Early 2017 (Main shutdown of the Cyclotron) 👷 First cooling test 1 Installation of the UCN source 👷 2017 April He-II cooling test UCN guide baking at 120 degC 👷 2017 June 👷 2017 July D₂O cooling (next slide) **First UCN Production** 2017 August - Clogging in the ³He circulation line - Stopped cooling and warmed up the cryostat 2017 Sept.-Oct. Fixing the ³He line problems 2017 October Start cooling for next UCN production 2017 November **UCN** production

- The vertical UCN source was shipped from Japan, and installed on the beam line 1U at TRIUMF
- The UCN source passed the full cooling test.
- We succeeded in condensing and cooling He-II down to 0.92K.
- We also succeeded in cooling D_2O .
- In August, He-II condensation failed due to clogging in the ³He circulation line.
- We're fixing the problems and will try UCN production in November.

Canada's national laboratory for particle and nuclear physics and accelerator-based science

TRIUMF: Alberta I British Columbia I Calgary I Carleton I Guelph I Manitoba I McGill I McMaster I Montréal I Northern British Columbia I Queen's I Regina I Saint Mary's I Simon Fraser I Toronto I Victoria I Western I Winnipeg I York

Thank you! Merci!

Follow us at TRIUMFLab

Backup slides

Ultracold Neutron (UCN)

Energy ~ 100neV Velocity ~ 5 m/s Wavelength ~ 500 Å (50 nm)

Interaction

Gravity ~ 102 neV/m Magnetic field ~ 60 neV/T Weak interaction: $n \rightarrow p + e + v$ Strong interaction (Fermi potential) ⁵⁸Ni wall potential: 335 neV

UCN can be confined in a vessel for a long time → nEDM, n lifetime, Gravity etc...

- UCN density in a vessel is the most important for precision measurements.
- 0.7 UCN/cm³ ($E_c = 90$ neV) for nEDM measurement at ILL (Grenoble)
- Much more intense UCN source is necessary to search for nEDM.
- We are developing a high density UCN source with superfluid helium (He-II).

Cryostat Safety Upgrade (4K reservoir & UCN guide)

GM cooling test (detail)

- Moved the cryostat to Meson hall (Feb 2)
- Put LN2 into 4K reservoir (Feb 3)
- Turned on compressors (Feb 6)
- Ice D₂O vessel became ~20K (Feb 8)
- 1K pot, ³He pot, UCN guide became ~ 77K (Feb 13)
- Cold leak test (Feb 14)
- Turned off compressors (Feb 14)

Temperature log of the GM cooling test

13/04/2017 12:48 Turned ON GM compressors

Pre-cooling started

Temperature log of the He-II cooling test

Temperatures [K]

Heat load test

- 1uA p-beam: 100mW heat load by γ/β -heating
- Put heat load into He-II using a heater wound around the UCN bottle.
- Heater power: 2.5mW, 12.5mW, 25mW, 75mW, 250mW, 1000mW, 4000mW
- Heating time: 10sec, 20sec, 60sec, Continuous (5minutes or more)

Heat load test

- 1uA p-beam: 100mW heat load by γ/β -heating
- Put heat load into He-II using a heater wound around the UCN bottle.
- Heater power: 2.5mW, 12.5mW, 25mW, 75mW, 250mW, 1000mW, 4000mW
- Heating time: 10sec, 20sec, 60sec, Continuous (5minutes or more)

Heater power 1000mW, 60sec ΔT (UCN double tube bottom) = 62mK ΔT (UCN double tube top) = 43mK Heater power 1000mW, Continuous ΔT (UCN double tube bottom) = 280mK ΔT (UCN double tube top) = 230mK (Had to abort test)

Heat load test

Heater power [mW]	Heating time [s]	ΔT (UCN double tube bottom)	ΔT (UCN double tube top)
2.5 (25nA p-beam)	10	0	0
	20	0	0
	60	0	0
	continuous	1 mK	1 mK
12 . 5 (125nA p-beam)	10	1 mK	1 mK
	20	1 mK	1 mK
	60	2 mK	1 mK
	continuous	4 mK	4 mK
25 (250nA p-beam)	10	1 mK	1 mK
	20	_	-
	60	4 mK	3 mK
	continuous	10 mK <mark>He-II O</mark> .	93K 9 mK
75 (750nA p-beam)	10	3 mK	2 mK
	20	3 mK	3 mK
	60	10 mK	7 mK
	continuous	30 mK He-II O .	95K 20 mK
250 (2.5uA p-beam)	10	6 mK	3 mK
	20	11 mK	7 mK
	60	27 mK	17 mK
	continuous	72 mW <mark>He-II 1</mark>	. <mark>OK</mark> 53 mK
1000 (10uA p-beam)	10	21 mK	13 mK
	20	32 mK	21 mK
	60	62 mK	43 mK
	continuous	280 mK (test aborted)	230 mK (test aborted)
4000 (40uA p-beam)	10	51 mK	35 mK

$$\frac{1}{\tau} = \frac{1}{\tau_n} + B \cdot T^7$$

$$- \tau_n = 880 \, \text{sec}$$

T [K]	τ (B=8x10 ⁻³)	
0	880	
0.5	834	
0.7	557	
0.8	355	
0.9	202	
1.0	109	

Liquid helium consumption

