

Canada's national laboratory for particle and nuclear physics and accelerator-based science

Status of the UCN guide development for the TRIUMF UCN source and TRIUMF neutron EDM experiment.

Edgard PIERRE for the TUCAN collaboration

October 17, 2017, nEDM2017 workshop, Harrison Hot Springs

Outline

- Developments at RCNP
- Guides for the prototype source at TRIUMF
- Future plans for the nEDM experiment and the next generation source
- Conclusion

RIUMF

Interaction of UCN with materials

UCN see a potential V

$$R = 1 - T = \left(\frac{1 - \sqrt{1 - V/E_{\perp}}}{1 + \sqrt{1 - V/E_{\perp}}}\right)^2$$

• Fermi potential:

$$V_F = V - iW = N\hbar \left(\frac{2\pi\hbar}{m_n}b - \frac{i}{2}v\sigma_{loss}\right)$$
$$\eta = \frac{W}{V}$$

• Wall loss probability:

$$\mu(E) = 2\eta \left[\frac{V}{E} \operatorname{arcsin} \left(\frac{E}{V} \right)^{1/2} - \left(\frac{V}{E} - 1 \right)^{1/2} \right]$$

Interaction of UCN with materials

- High $V_{_{\scriptscriptstyle F}}$ low η are suitable for guide material
- UCN have a spin and can be polarized

Like μ, one can define

 a depolarization probability
 per bounce β (depending on material)

nEDM statistical sensitivity

$$\sigma_{d_n} = \frac{\hbar}{2\alpha T E \sqrt{N_0}}$$

nEDM statistical sensitivity

nEDM statistical sensitivity

- Minimizing η and β is required

in order to minimize σ_{dn}

Developments at RCNP

• Prototype source developed from 2002 to 2012

UCN Valve ³He 3 m ³He Pumping Gas Handling Panel 1K Helium Pumping Bottle: Al with NiP coating 1.25 m Guides: SUS with NiP coating 1K ³He Liquid pot pot Helium Ā Helium V_{theo, NiP}~214 neV Liquifier 4K Liauid 4K Liauid Helium Helium reservoir reservoir Radiation Radiation Isopure Shield Shield Helium Mean flight length: ~ 5.5 m UCN Tank Ice D₂O bottle RT D₂O Graphite vessel Graphite vesse proton beam Beam line Graphite

Target

- Prototype source developed from 2002 to 2012
- Improvement of the storage lifetime mainly due to µ reduction

Year	τ _s	T _{Hell}	Improvement
2002	14 s	1.2K	
Jun 2006	29 s	0.9K	Use ³ He cryostat
Nov 2006	34 s	0.8K	Reduce Hell film perimeter (8.5 cm \rightarrow 5 cm)
Jul 2007	39 s	0.8K	Remove ³ He contamination
Apr 2008	47 s	0.8K	Fomblin coating
Dec 2009	61s	0.8K 🤇	Alkali cleaning
Feb 2011	81s	0.8K	High temperature baking (140°C)

Developments at RCNP

- Polarization of the UCN beam measured with SUS coated with non magnetic nickel alloy (NiMo)
- 3 settings:

Developments at RCNP

- Polarization of the UCN beam measured with SUS coated with non magnetic nickel alloy (NiMo)
- 3 settings:

- Polarization of the UCN beam measured with SUS coated with non magnetic nickel alloy (NiMo)
- 3 settings:

Developments at RCNP

- Polarization of the UCN beam measured with SUS coated with non magnetic nickel alloy (NiMo)
- 3 settings:

FRIUMF

- 1: SUS guides
- 2: Cu 90° bend
- 3: 10G holding field

Developments at RCNP

- Polarization of the UCN beam measured with SUS coated with non magnetic nickel alloy (NiMo)
- 3 settings:

RIUMF

- 2: P(10s)=52.1±0.7%
- 3: P(10s)=74.8±0.9%
- Huge substrate effect

Source installation at TRIUMF

- New shielding increased the UCN flight length by ~ 3.5 m
- New guides are necessary

New guides were chosen to be SUS

(V~188 neV) without coating. Cut and welded at TRIUMF

• Electro polished in order to reach Ra<3µin (60 nm)

Cleaned using RCNP procedure in a clean room

• Baked (400 K, 12 hours) and installed on the source

Status October 17: UCN guides ready to be mounted!

 Status October 17: UCN guide mounted!

Future plans for nEDM

- We plan to expend the beamline with substrate guides coated with NiP. NiP must be characterized, in term of V, β, η and transmission
- Other candidates such as DLC are also considered
- $V_{_{NP}}$ was measured using CN reflectometry
- β_{NP} will be cross-checked at PSI

• $\eta_{_{NP}}$ and transmission will be measured at TRIUMF ___22

©TRIUMF CN reflectometry at MLF (J-PARC)

NiP potential was measured using CN reflectometry

©TRIUMF CN reflectometry at MLF (J-PARC)

- V_{NiP(10%)}=207±5 neV
- Slightly lower than theoretical value (214 neV)

because of sample impurities

©TRIUMF Depolarization in a magnetic trap

β_{NP} was measured at LANL (for thick coating)

```
β<sub>NP</sub><6.2x10<sup>-6</sup> (NIMA 827, 32 (2016))
```

 New measurement planned this year at PSI for thin coating using the apparatus described in

PR C 96, 035205 (2017).

©TRIUMF UCN guide transmission

 guide transmission is would be measured with the new UCN source at TRIUMF, using method developed in

RUMF Coating facility at the University of Winnipeg

 Nominally designed for pulsed laser deposition. Can accept magnetron sputtering, electron beam, and thermal evaporation sources.

Vacuum Gauges

Gowning Room

CFI approved

Guide Cleaning Station

R. Mammei

Baking chamber

®TRIUMF Outlook

- First UCN beamline (made of EP SUS) is ready and will be tested during the first UCN production at TRIUMF in 3 weeks
- NiP alloy is our current candidate for our next generation guides. Its Fermi potential has been measured with CN, and other characteristics will be measured in the coming month
- A coating facility will be built at the University of Winnipeg, allowing us to make our own guides
- Our UCN facility will be used to test next generation UCN guides

Canada's national laboratory for particle and nuclear physics and accelerator-based science

TRIUMF: Alberta | British Columbia | Calgary | Carleton | Guelph | Manitoba | McGill | McMaster | Montréal | Northern British Columbia | Queen's | Regina | Saint Mary's | Simon Fraser | Toronto | Victoria | Western | Winnipeg | York

Thank you! Merci!

Follow us at TRIUMFLab