Monte Carlo optimization of a nextgeneration ultracold-neutron source

Wolfgang Schreyer for the TUCAN collaboration

2017-10-18, nEDM 2017, Harrison Hot Springs

- Design parameters
- Optimization
- FLUKA
- MCNP
- PENTrack
- Preliminary optimization results
- Spallation source
- Combination of neutron moderators
- Radiation shielding
- Superfluid-helium converter
- Heating by γs, neutrons, β electrons
- Upscattering lifetime $\mathrm{T}_{\mathrm{up}}=130 \mathrm{~K}^{7} \mathrm{~s} \cdot \mathrm{~T}^{-7}$
- Geometry of ultracold-neutron guides

Optimization

Starting geometry:

- Best use of symmetry
- Cylindrical aluminum vessels centered on target

- fluka.org (Free)
- Monte Carlo simulation of particle transport in matter
- Including multi-group transport of low-energy neutrons
- Neutron-scattering models for mans isotopes at 296 K , some at 87 K and 4 I
- Geometry as combination of basic
 shapes
- Easy to use thanks to flair (geometry builder, plotter)
- Can output particle flux in volume/over surface, production of radioactive nuclei, deposit of prompt and decay heat
- mcnp.lanl.gov
- Much more detailed nuclear-scattering data
- Including many specialized neutron moderators
- Combinatorial geometry, can be exported from flair
- Detailed output of particle flux in volume/over surface, heat deposit, binned in energy, time, and directio
- Text-only configuration

Neutron flux $<6 \mathrm{meV}, 6-100 \mathrm{meV}$

- FLUKA has no scattering data for liquid deuterium at 20K
- Good agreement between MCNP/FLUKA for free-gas model at 87 K
- Cold-neutron flux 10 times higher with 20K deuterium in MCNP

- Goal: maximize number of UCN available to experiment
- Constraints:
- Cooling power at $1 \mathrm{~K}: \sim 10 \mathrm{~W}$
- Amount of cold moderators (liquid deuterium!)
- Simple model: maximize UCN production per heat P/Q
- Detailed model: maximize $P \cdot$ т with
 $1 / T=1 / T_{\text {up }}(Q)+1 / T_{\text {wall }}+1 / T_{\beta}$
- Individually optimize
- Thicknesses of moderators
- Size of He-II bottle
- Target position
- Iterate several times
- Manage configurations with git
- Ca. 15 min runtime for each configuration on ComputeCanada cluster (100,000 p)

RtRIUMF

Optimization with MCNP

Lead layer above target

Optimization with MCNP

$\mathrm{D}_{2} \mathrm{O}$ layer above target

LD_{2} layer above target

2017-10-18

12

TRIUMF

Optimization with MCNP

Radial L_{2} layer

Trade-off between $\mathrm{D}_{2} \mathrm{O}$ and LD_{2} layer above target

Height and radius of He-II bottle

using improved model: P• τ with $1 / \tau=1 / \tau_{\text {up }}(Q)+1 / \tau_{\text {wall }}+1 /$

Preliminary results

- Radial LD_{2} layer more important than lower
- Best He-II-bottle height $30-40 \mathrm{~cm}$, radius $15-20 \mathrm{~cm}$ (for current cooling scheme)
- Limited by amount of LD_{2} !
- For He-II height 30 cm , radius $15 \mathrm{~cm}, 40 \mu \mathrm{~A}$ beam:
- $20.6 \mathrm{IHe} \mathrm{II}, 115 \mathrm{ILD}_{2}$

- 3.9.107 UCN/s
- 7.9 W max. heat in He -II
- 65 W max. heat in LD_{2}
- Best strategy to reduce LD_{2} : reduce He -Il size and go closer to target

- Self-developed Monte Carlo simulation for UCN (+protons, electrons, comagnetometer atoms)
- Interactions:
- Fermi-potential formalism, microroughness model
- Magnetic moment in strong magnetic fields
- Precession of spins in weak magnetic fields
- Fully relativistic equations of motion, BMT equation
- Geometry directly imported from CAD, timedependent (valves, etc.)
- Magnetic/electric field maps imported from FEM

- Open source: github.com/wschreyer/PENTrack.git
- Description: 10.1016/j.nima.2017.03.036

2017-10-18

Steve Sidhu \& Patricia Gnyp:

- Optimize geometry of UCN guides
- Compare storage and extraction time for different bottle shapes

Optimization with PENTrack

Optimization with PENTrack

Tatsuya Kikawa:

- Optimize vertical extraction height
- Steady-state mode vs. batch mode

Magnetic field as a function
of position from Al foil

coated with DLC
Position (cm)

Tatsuya Kikawa:

- Optimize vertical extraction height
- Steady-state mode vs. batch mode

Vertical extraction $(50 \mathrm{~cm})$

Preliminary results

- Vertical extraction of $50-100 \mathrm{~cm}$ seems best for nEDM experiment
- Work in progress, many unknown parameters
- He-II temperature
- Wall lifetime

- More realistic source
- UCN guides
- Heat exchanger, ${ }^{3} \mathrm{He}$
- Cryostat
- Shapes of pressure vessel
- Optimize shielding
- Heat deposition in heat exchange
- Activation of cryostat

Canada’s national laboratory for particle and nuclear physics and accelerator-based science

Thank you! Merci!

Delayed-heating model

- Decay constant ~200 s
- Assume 25% duty cycle 1 min beam, 3 min no beam
- Use min./max. heat after 5 irradiations

Detailed storage-time model

- Detailed model: maximize $\mathrm{P} \cdot \mathrm{T}$ with

$$
1 / T=1 / T_{\text {up }}(Q)+1 / T_{\text {wall }}+1 / T_{\beta}
$$

- $\mathrm{T}_{\mathrm{up}}(\mathrm{Q}) \sim \mathrm{Q}^{-1.2}$ to $\mathrm{Q}^{-1.4}$

$$
\begin{aligned}
& \tau_{\text {wall }}=\frac{4 V}{A\langle v \bar{\mu}\rangle} \\
& \langle v \bar{\mu}\rangle=\int_{0}^{U} v(E) \bar{\mu}(E) N(E) d E=\frac{3 \sqrt{2} \pi W}{8 \sqrt{m U}} \\
& \bar{\mu}(E)=2 \frac{W}{U}\left(\frac{U}{E} \sin ^{-1} \sqrt{\frac{E}{U}}-\sqrt{\frac{U}{E}-1}\right) \\
& N(E)=\frac{\sqrt{E}}{\int_{0}^{U} \sqrt{E} d E}
\end{aligned}
$$

Guide diameter

- $\quad \begin{aligned} & d=100 \mathrm{~mm} \\ & d=150 \mathrm{~mm}\end{aligned}$
$\Delta \quad d=200 \mathrm{~mm}$

