Supersource of ultracold neutrons with superfluid helium at WWR-M reactor

A. Fomin Project leader: A. Serebrov

PNPI, Gatchina, Russia

nEDM 2017 Harrison Hot Springs, Canada 15-20 October 2017

From rainy Gatchina to rainy Harrison Hot Springs

PNPI entrance

Progress of UCN sources

The resource of basic elements of the reactor provides its further operation within 25 years.

UCN source at WWR-M reactor

The scheme of experimental installations on the BBP-M reactor after installation in a thermal column of the reactor of UCN source with superfluid helium at a temperature of 1.2 K.

Principle of a source

UCNs are generated in helium from cold neutrons of 9 Å wavelength (12 K energy). It is correspond with phonon energy: cold neutron produces phonon, practically stops and becomes an ultracold one. UCN can "live" in superfluid helium for tens or hundreds of seconds until a phonon be captured.

Cold neutrons (9 Å) penetrate through the wall of a trap, but ultracold neutrons (500 Å) are reflected, that is why UCN can be accumulated up to the density defined by the time of storage in the trap filled with superfluid helium.

MCNP neutron flux calculation results and heat generation in thermal column of WWR-M reactor at 15 MW

UCN source at reactor WWR-M

UCN source at reactor WWR-M

UCN - Beams of ultracold neutrons

- CN Beams of cold and very cold neutrons
- **1 EDM spectrometer**
- 2 UCN magnetic trap
- 3 Experiment n-n '
- 4 UCN gravitational Trap
- **5 Diffractometer**
- 6 Reflectometr
- 7 Polarimeter
- 8 Powder Diffractometer
- 9 Spin-echo spectrometer

10- Cryogenic equipment of the UCN source

11- Platform for experimental equipment

- 12 Lead shield cooling system
- **13- Transport entrance**

UCN source with neutron guides

UCN guide of UCN source

CN and VCN guide of UCN source

MC model of the source

(1) source chamber; (2) neutron guide; (3) UCN trap; (4) membrane in front of the inlet to the UCN trap;(5) pipe for filling the chamber; (6) pipeline for evacuation of the chamber (UCN gravitational shutter)

UCN density at reactor WWR-M

Production of the source 10⁸ UCN/s.

Cold and very cold neutrons flux

The general scheme of a complex of experimental installations for carrying out research of fundamental interactions with UCN at PIK reactor

A layout of UCN source with superfluid He and experimental installations on channels GEK-3 and GEK-4 of the reactor PIC: UCN1 – UCN source on channel GEK-4, UCN2 – UCN source on channel GEK-3, EDM – installation for measuring a neutron EDM, GT – installation for measuring a neutron lifetime with UCN gravitational trap, MT – an installation for measuring a neutron lifetime with UCN magnetic trap.

Schemes of UCN sources to compare the projects for WWR-M reactor and PIK reactor

WWR-M vs PIK

15

Comparative table of neutron sources

	WWR-M	РІК		ILL	
	Value	Value	Factor WWR-M/PIK	Value	Factor WWR-M/ILL
Thermal neutrons, n·cm ⁻² s ⁻¹	3.2 ·10 ¹²	2.5·10 ¹⁴	0.01	2.5 ·10 ¹⁴	0.01
UCN production rate, n/s	1.10 ⁸	Not planned		1.2 x 10 ⁶	100
UCN density at nEDM spectrometer $\rho_{\text{ЭДМ}}$, cm ⁻³	1.3·10 ⁴	Not planned		10	1000
Cold Neutrons (2-20 Å), n/(cm²s) ⁻¹	1.1·10 ⁸	5.44 ·10 ⁹	0.02	5.5 ⋅10 ⁹	0.02
Very Cold Neutrons(50-100 Å), n/(cm²s) ⁻¹	2.3 ·10⁵	Not planned		4·10 ⁶	0.06

Vacuum test of full-scale model of UCN source

Cryogenic test of full-scale model of UCN source

Cryogenic complex at WWR-M reactor

Hall of the cryogenic equipment

Vacuum equipment

Cryostat

Helium liquefier and refrigerator

Compressors

Receivers, cryogenic building 19

The full-scale technological model of UCN source with superfluid helium is mounted

The full-scale technological model of UCN source with superfluid helium is mounted

Refrigerator

Cryostat

Liquefier

Recent experiment on full-scale model

First experiments with heat load simulations on superfluid helium were completed

Recent experiment on full-scale model

Modernization of low temperature part

Pumping pipe was increased from 50 mm to 100 mm

Improvingpumpingsystemwillresultsuperfluidtemperaturedecrease

This will increase UCN density

Experiment will be carried out in October 2017

UCN source inside the thermal column of the WWR-M reactor

25

In-channel part of the UCN source: vacuum module

Vacuum module manufacture: lead shield

It is designed to reduce the heat release at lowtemperature elements of the UCN source due to the capture of gamma quanta.

Cooling type: water

Composition: Pb – 95% Sn – 5%

Diameter: 1000 mm Width: 100 mm Weight: 900 kg

Vacuum module manufacture: graphite block

It is intended for the thermalization of neutrons and the creation of a 4π irradiation geometry for the UCN source.

Composition: reactor graphite

Cooling type : thermal conductivity

Diameter: 1000 mm Number of elements: 64

Vacuum module manufacture: vacuum container

It is designed for reduction of heat inflows and localization of the beyond-design accident related to the explosion of hydrogen-air mixture inside the module.

Cooling type : thermal conductivity

Composition: AMg6

Length: 3000 mm Wall thickness: 22 mm Weight: 900 kg

UCN source design / manufacture

Will be ready till December 2018

UCN source design / manufacture

Main hall of WWR-M reactor

WWR-M reactor thermal column

WWR-M reactor thermal column

VERY RADIOACTIVE!!!

Thermal column measurements

FARO FOCUS 3D scanner

2 mm accuracy

Thermal column measurements

3D scan was done from 7 points without contacting radioactive thermal column

Thermal column measurements

Very accurate results obtained

Thermal column displacement

Complex of the available equipment for UCN source on the WWR-M reactor and complex of the available experimental installations

WWR-M reactor 2. Intr-channel part of UCN source in the thermal column of the reactor. 3. Neutron guide system.
The cryostat for superfluid helium. 5. He refrigerator on 15K. 6. He liquefier. 7. System of vacuum pumping. 8. Cleaning block He. 9. Compressor for refrigerator. 10. Compressor for He liquefier. 11. He dewar. 12. He gas-holder. 13. Downloading compressors He in cylinders. 14. Balloon cell. 15. He receivers. 16. D2 receivers. 17. Gravitational trap for measurement of neutron lifetime. 18. EDM spectrometer. 19. A magnetic trap for measurement of neutron lifetime. 20. Reflectometer. 21. Spin-echo a spectrometer with VCN. 22. Installation for search of mirror dark matter. 23. WWR-M reactor ramp.

UCN facilities at reactor WWR-M

Experimental program with UCN at reactor WWR-M

History of nEDM measurements in Gatchina and Grenoble. Result and prospects of PNPI-ILL-PTI collaboration

International research center with ultracold neutrons at reactor WWR-M in Gatchina

From rainy Gatchina to rainy Harrison Hot Springs

Gatchina palace