arXiv 1708.06367 - Search for axion-like dark matter through nuclear spin precession in electric and magnetic fields

nEDM as a Dark Matter Detector

Constraints on Axion-like Dark Matter from Limits on an Oscillating EDM Nicholas Ayres, University of Sussex on behalf of the PSI nEDM collaboration With: Michał Rawlik, ETH Zürich M. Fairbairn, D.J.E. Marsh, Kings College London V.V. Flambaum, University of New South Wales Y.V. Stadnik, Johannes Gutenberg Universität Mainz

Axions and ALPs

- QCD θ -term allows strong CPv, however this is not observed, requiring fine tuning to 10^{-10}
- 1977: Peccei-Quinn propose solution: promote θ to a field which relaxes to zero: resultant particle is the axion
- Axion-like particles (ALPs) have similar couplings, but do not necessarily solve strong CP

Axions as Dark Matter

- Ultralight axions m~10⁻²²-10⁻¹⁷eV can be DM, in place of conventional WIMP DM.
- Can be produced non-thermally in early universe through vacuum misalignment
- Acts like coherently oscillating classical field with frequency ~ mass

Axion-neutron interactions

 $\mathcal{L} = \frac{C_G}{f_a} \frac{g^2}{32\pi^2} a G^b_{\mu\nu} \tilde{G}^{b\mu\nu} - \frac{C_N}{2f_a} \partial_\mu a \overline{N} \gamma^\mu \gamma^5 N$

Axion-gluon coupling Causes oscillating EDM through same mechanism as QCD theta

$$\mathcal{L} = \frac{g^2}{32\pi^2} \theta G^b_{\mu\nu} \tilde{G}^{b\mu\nu}$$

Axion-nucleon coupling Causes "axion wind" as we pass through cosmic axion field Non E dependant frequency modulation

- 2 Analyses:
 - All whole (1 day) runs from Sussex-RAL-ILL 1998-2002
 - All individual (5 min) cycles from PSI 2015-2016
- Extract power spectrum using Least Squares Spectral Analysis
- Monte Carlo to find probability distributions
- Use CL_S technique for exclusions

Data Preparation-ILL

UNIVERSITY

OF SUSSEX

- Classic Sussex-RAL-ILL
 analysis technique
- Use $R = \frac{v_n}{v_{Hg}}$ as gradiometer to compensate false EDM
- Fit Crossing Lines
- Subtract fit from data to analyse EDM residuals

Least Squares Spectral Analysis

- Fit for each ω : $d_n(t) = A \cos \omega t + B \sin \omega t$
- Equivalent to Fourier transform, but allows uneven time spacing and errors

Monte Carlo

- Generate fake data (Gaussian noise with same timings as data) and do Least Squares Spectral Analysis
- Analyse for each frequency
- Fit expected exponential distribution to extrapolate to unlikely events

Look Elsewhere and False Alarm

- Expect 5% false positives for P=0.05, but we test thousands of hypotheses frequencies
- Solution: need to inflate required p-values

$$P_{\text{global}} = 1 - (1 - P_{\text{local}})^{N_{\text{effective}}}$$

• Fit MC data for "effective number of frequencies"

ILL Detection

Exclusion

- Define $CL_S = CL_{S+B} / CL_B$
- Avoids claiming exclusion where we are not sensitive
- Black = Excluded

Oscillation Frequency (days^-1)

Without CLS Correction Unphysically strong exclusion around 10⁻³ days⁻¹

Analysis of the PSI data

- For each cycle, estimate v_n from neutron counts
- Analyse time series of R(t) from all individual cycles, sorted by E field
 - Add free offset to each run to account for all systematics
 - Can access axion wind and varying d_n

ILL and PSI Exclusion

ILL and PSI Exclusion

PSI: Wind Exclusion

Conclusion:

- Null result
- First laboratory limits on axion-gluon coupling, improving upon limits from astrophysics by up to 3 orders of magnitude
- 40x better than previous lab results axionnucleon
- Paper: arXiv 1708.06367 Accepted to PRX (subject to minor corrections)

OF SUSSEX

Backup Slides

Further Reading

- Search for axion-like dark matter through nuclear spin precession in electric and magnetic fields, C. Abel et. al. arXiv 1708.06367 - (accepted subject to minor corrections at PRX)
- Axion dark matter detection with cold molecules, P. W. Graham and S. Rajendran, Phys. Rev. D 84, 055013 (2011).
- New Observables for Direct Detection of Axion Dark Matter P.W. Graham and S. Rajendran, Phys Rev D 88, 035023 (2013)
- Axion-induced effects in atoms, molecules, and nuclei: Parity nonconservation, anapole moments, electric dipole moments, and spin-gravity and spin-axion momentum couplings, Y. V. Stadnik and V. V. Flambaum, Phys. Rev. D 89, 043522 (2014).
- Proposal for a cosmic spin axion spin precession experiment (CASPEr) D. Budker, P. W. Graham, M. Ledbetter, S. Rajendran, and A. O. Sushkov, Phys. Rev. X 4, 021030 (2014).

PSI Analysis Detection

PSI Analysis Detection

PSI Analysis Detection

PSI Effect of Gradient Drift Correction

UNIVERSITY OF SUSSEX

Inter-cycle drifts in vertical gradient were corrected with Cs magnetometers.

We expect peaks at 28µHz (inverse of 10 hours) and 3.3mHz (inverse of 300 seconds) due to patterns in datataking.

PSI MC: cumulative distribution function extrapolation for one frequency

PSI MC: distribution of the global minimal p-value

