Electric field development for cryogenic nEDM experiments

Jacob Thorne – on behalf of the nEDM group at the University of Sussex

Contents

- Motivation for use of LHe as a medium
- 'Medium' scale E field measurements with insulator present; technique and results
- Simulations to optimise electrode geometry
- 'Large' scale E field measurements; technique and preliminary results

Motivation for cryogenic nEDM

Superfluid LHe at 0.5K is a super thermal source for UCN which can potentially give higher N by having it in-situ with an nEDM experiment.

Dielectric strength of LHe is poorly understood, however, fields in excess of 100kV/cm at 4.2 K were reported separately by Long et al. and A.J. Davidson.

Room temperature: ~11 kV/cm

J. C. Long et al., High voltage test apparatus for a neutron EDM experiment and lower limit on the dielectric strength of liquid helium at large volumes, 2006, physics/0603231 A. J. Davidson, PhD thesis, University of Sussex, 2011

What is the maximum E-field in a cryogenic EDM Ramsey Cell at 0.5 K?

Diamond is E field obtained •

LANL

(2016)

- Inverted is predicted •
- Everything is measured • breakdown E field!

Rationale

- All measurements presented are in LN2, behaviour of the fluid is similar to that of LHe
- Insulators used are analogues for materials with good Fermi potential for UCN; alumina = BeO, borosilicate glass = quartz (similar structure)
- Planned measurements in LHe will be at 4.2 K SVP as pressurising volume will recover E field.

Experimental results for breakdown 'medium' scale tests

Breakdown runs in LN2; one tight to groove on outside, other tight to groove on inside at 4.94 mm separation.

Alumina relative permittivity: 9.3-11.5 (BeO: 6.76)

Tracking observed on both!

60x70 mm

Preference to one side!

J Thorne - University of Sussex

Electrode diameter: 124.99 mm 50x60 mm

Map contours: E 1.303168E+007 Proposed Mechanism 1.200000E+007 • Experimental thinking; the groove and presence of the insulator creates high field region at the cathode triple junction, "weak spot" of system, breakdown originates at the region by creating local 1.000000E+007 heating forming gas bubble in which the breakdown can propagate to the anode. • Tracks are the result of vaporisation of electrode material in the cathode triple junction, in this case - 8.000000E+006 stainless steel, via the cavitation process that forms the bubble. High field region - 6.000000E+006 HV electrode - 4.000000E+006 - 2.000000E+006 26 mm Alumina insulator 3.012870E-012 Integral = 2.153746E+010 Ground 7

Experimental results using glass insulators on 'medium' scale

Borosilicate glass insulator 60 mm x 70 mm in LN2

BG: ε_r = 4.6 (Quartz: 4.5)

- Significant chipping from mechanical compression between electrodes.
- Polishing of electrodes and glass seemed to over come the problem of chipping, possibly relieving the local strain present.

Polished surface!

Shattering tentatively attributed to cavitation stress on the triple junction surface or shock wave in fluid from breakdown could also stress the insulator.

Comparison of BG with alumina insulators

- Area effect seems to be present!
- Higher relative permittivity insulator reduces V_{bd}
- Insulator damage lowered V_{bd}

CryoEDM

 ϕ 250

45

Preliminary 'large' scale measurements in LN2

- Surface area effect, ${\sim}54\%$ reduced mean V_{bd} from 58.38mm trend line.
- Linear extrapolation to 26mm for 250mm: V_{bd} = 321.7 kV in LN2.
- Measurements were only done with +130 kV on the top electrode!

Conclusions and outlook

- Experimental results and simulations give us a possible mechanism for explaining breakdowns in a cryogenic liquid with an insulator present.
- Insulator reduces V_{bd} by about ${\sim}12\%$ for alumina, BG seems to recover this back to the trend line
- Surface area effect does reduces V_{bd} by ${\sim}54\%$ from 1cm -> 24cm ID
- However, measurements thus far have only been on small separations in LN2!
- Dielectric strength of LHe I is ~60% lower then LN2, expect breakdown voltages at 26 mm on 'large' scale measurements at 193.02 kV using LN2 results

Conclusions and outlook

LANL

(2016)

- Aim to complete breakdown
 Second S
- By December measurements in LHe I at 4.2K SVP will be performed, same separations in LN2, with the goal of getting to 26 mm for 100 kV/cm.

Acknowledgements

Would like to thank;

- Mike Hardiman
- Ian Wardell
- Clark Griffith

For their sizable contribution to this project.

With special mention to Estelle Chanel and Dave Shiers for the help with various points on the project

Backup slides

Dielectric Strength of Liquid Helium

Temperature Dependence under SVP – James Karamath

Reduction by factor ~ 2-3 Nothing obvious at the λ -point Minimum depth of He liquid gives min $P_{hydrostatic}$

Is variation due to Temperature or Pressure ?

J Thorne - University of Sussex

AJD apparatus for pressure dependence measurements

Electrodes: φ 53 mm overall φ 32 mm plane 1.27 mm separation

In superfluid to 1.7K (now extended to 1.3K – Jack Roberts & Stuart Ingleby)

J Thorne - University of Sussex

Effect of multiple breakdowns

PC cooldown Run number

After ~1600 breakdowns V_{bd} at 4.2K and 760 torr is reduced Recovers after cleaning and repolishing Justification to normalise

AJD & DKH

Experimental results

3/30 breakdowns through liquid volume in LHe I

10 mm x 15 mm x 7.5 mm alumina spacers; 2.96 mm electrode separation

Tracks appear to be mostly discontinuous → propagated to the anode from cathode

Damage at CJT - initiation point??

AJD & DKH

Experimental results

6/26 breakdowns through liquid volume in LHe II

10 mm x 15 mm x 7.5 mm alumina spacers; 2.96 mm electrode separation

Tracks continuous on the inside and outside. \rightarrow initiation from CTJ?

Pressure increase was also observed consistently 1-2s after breakdown – possibly due to Kapitza resistence?

Experimental results

 ${\sim}18/20$ breakdowns through liquid volume in LN2

10 mm x 15 mm x 7.5 mm alumina spacers; 2.96 mm electrode separation

Catastrophic failure of insulators, breakdown through solid

J Thorne - University of Sussex

Evidence of tracking at the CTJ

Experimental results for breakdown 'medium' scale tests

60 mm x 70 mm x 16 mm alumina spacers; 4.94 mm electrode separation, electrode diameter: ϕ 124.99 mm

Breakdown \sim 1/15 through LN2 volume

Tracking observed on outside; combination of discontinuous and continuous, as well as chipping

Preference to one side!

-Coda Connector

Experimental results for breakdown 'medium' scale tests

50 mm x 60 mm x 16 mm alumina spacers; 4.94 mm electrode separation

Breakdowns \sim 7/13 through volume

Continuous and discontinuous tracking on inside, significant chipping as well

Again preference to one side!

Breakdown Damage on Electrode Surfaces – JRK, AJD, DKH, LM

A new site for every Breakdown Breakdown goes ~ straight across ~100 -200 μm diameter Differences between anode and cathode

AFM to get depth profiles - Lydia Munday

VF VECTOR FI

Diameter ~ $200\mu m$ In He I @ ~ 50kV

(a) 3D image of top part of damaged area shown in figure 8.16

Width : Depth ~ 500 -1000:1 (~100 nm depth) ! <u>significant</u> (60%) loss of material !

J Thorne - University of Sussex

Simulations to optimise the groove geometry

Determined the parameter space for the groove;

- a, b major & minor radius of an eclipse
- θ angle from base for an eclipse
- d depth of groove
- Δr radial separation for inside and outside of the insulator
- ε_r relative permittivity of the insulator

Ran these parameters individually in Opera, varying each one to find an optimal geometry that decreases the E field on the groove

Electrode separation; 14mm with borosilicate glass insulator, radial separation 0.5mm

Electrode separation; 14mm with alumina insulator, radial separation 0.5mm

R14 + R15, with cut for the CTJ at the bottom of the insulator.

Designed to contain 20 litres of LHe I at 4.2K SVP HV room temp. connection to Spellman SL10 LHe fill line LN2 tank for 100 K shields, thermal coupling to insert +/- 130 kV cryogenic feeds, double o-ring sealed to atmosphere XYZ manipulator J Thorne - University of Sussex Vacuum; $< 10^{-7}$ mbar Through port to diff. and rotatory pumps

