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The LANSCE UCN Facility

The Los Alamos Neutron Science Center

Area B

LANSCE Proton LINAC

800 MeV p+, ∼ 10µA to Area B
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The LANSCE UCN Facility
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The LANSCE UCN Facility

The LANSCE Area B Experimental Floor

UCNA/B Spectrometer
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The LANSCE UCN Facility

The LANSCE Area B Experimental Floor

UCNτ Trap
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The LANSCE UCN Facility

The LANSCE Area B Experimental Floor

Test port
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The LANSCE UCN Facility

Experiments hosted
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The LANSCE UCN Facility

LANSCE UCN Production over the years

UCN density at the exit of the 
biological shield
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The LANSCE UCN Facility

Time for an Upgrade

The original UCN source concieved for UCNA and delivered a
maximum of 2.5 polarized UCN/cc to the UCNA
spectrometer (determined by the β-decay rate 2010).

To host an nEDM experiment or next generation neutron
lifetime or asymmetry experiment an increase in the UCN
output and UCN-beamlines was needed.
3 areas were identified for upgrades:

1 Administrative permission to increase proton current on target
to 10µA

2 Replace and improve the stainless steel guides in the biological
shielding

3 Redesign of the UCN converter and moderator insert.

The LANL LDRD office provided funding to start this upgrade
in 2014.
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Upgrade of the Source Insert and Guide system

Details of the Upgrade

Performance of the upgraded ultracold neutron source at Los Alamos National
Laboratory and its implication for a possible neutron electric dipole moment

experiment
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(Dated: October 17, 2017)

The ultracold neutron (UCN) source at Los Alamos National Laboratory (LANL), which uses solid
deuterium as the UCN converter and is driven by accelerator spallation neutrons, has been success-
fully operated for over 10 years, providing UCN to various experiments, as the first production UCN
source based on the superthermal process. It has recently undergone a major upgrade. This paper
describes the design and performance of the upgraded LANL UCN source. Measurements of the
cold neutron spectrum and UCN density are presented and compared to Monte Carlo predictions.
The source is shown to perform as modeled. The UCN density measured at the exit of the biolog-
ical shield was 184(32) UCN/cm3, a four-fold increase from the highest previously reported. The
polarized UCN density stored in an external chamber was measured to be 39(7) UCN/cm3, which is
sufficient to perform an experiment to search for the nonzero neutron electric dipole moment with
a one-standard-deviation sensitivity of σ(dn) = 3 × 10−27 e·cm.

PACS numbers: Valid PACS appear here

Ultracold neutrons (UCN) [1, 2] are defined to be neu-
trons of sufficiently low kinetic energies that they can be
confined in material and magnetic bottles, corresponding
to kinetic energies below about 340 neV. UCN are playing
increasingly important roles in the study of fundamental
physical interactions (see e.g. Refs. [3, 4]). Searches for a
non-zero electric dipole moment of the neutron (nEDM),
which are performed almost exclusively using UCN [5–
8], probe new sources of time reversal symmetry viola-
tion [9, 10] and may give clues to the puzzle of the matter-
antimatter asymmetry in the Universe [11, 12]. The free
neutron lifetime, which is measured using UCN [13, 14] or
beams of cold neutrons [15], is an important input param-
eter needed to describe Big-Bang nucleosynthesis. Mea-
surements of neutron decay correlation parameters per-
formed using UCN [16–19] as well as cold neutrons [20],
along with measurement of the free neutron lifetime, test
the consistency of the standard model of particle physics
and probe what may lie beyond it [21]. Precision studies
of bound quantum states of the neutron in gravitational
fields are performed to search for new interactions [22].

For decades, the turbine UCN source [23] at Institut
Laue-Langevin (ILL) provided UCN to various experi-
ments as the world’s only UCN source with sufficient

∗ Corresponding author. Electronic address: ito@lanl.gov

UCN density and flux. Ultimately the performance of
the UCN experiments performed there was limited by
the available UCN density and flux. This led to develop-
ment of many new UCN sources around the world based
on the superthermal process [24] in either liquid helium
(LHe) [25] or solid deuterium (SD2) [26–29] coupled to
spallation or reactor neutrons. See e.g. Ref. [4] for a
list of operational and planned UCN sources around the
world.

At Los Alamos National Laboratory (LANL) a UCN
source based on a SD2 converter driven by spallation
neutrons has been operated successfully for over 10
years [30]. This was the first production UCN source
based on superthermal UCN production. As the only
operational UCN source in the US and as one of the two
multi-experiment UCN facilities in the world (along with
the ILL turbine source), it has provided UCN to various
experiments including the UCNA [16–19], UCNB [31],
and UCNτ [14] experiments as well as development ef-
forts for the nEDM and Nab experiments at SNS [31, 32].

This source has recently undergone a major upgrade,
primarily motivated by the desire to perform a new
nEDM experiment with improved sensitivity [33]. The
current upper limit on the nEDM, set by an experiment
performed more than a decade ago at the ILL turbine
UCN source, is dn < 3.0 × 10−26 e·cm (90% C.L.)[7],
which was statistics limited. Further improvement on
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Commissioning of the upgraded Los Alamos Ultracold neutron source (LA-UR-17-29581)

Upgrade of the Source Insert and Guide system

Design Constraints

Graphite Reflecting box
can not change

Be reflector can not
change

Target assembly is fixed
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Commissioning of the upgraded Los Alamos Ultracold neutron source (LA-UR-17-29581)

Upgrade of the Source Insert and Guide system

Insert Redesign

Matched source diame-
ter to guide system

Removed cooling fins
and increase cold mod-
erator coverage

Integrated the flapper
assembly

R.W. Pattie Jr (for the LANL Neutron Team) nEDM 2017 October 17, 2017 11/ 33



Commissioning of the upgraded Los Alamos Ultracold neutron source (LA-UR-17-29581)

Upgrade of the Source Insert and Guide system

The new source insert

Improvements

Fully integrated flapper valve

Mitered elbow coupling source volume to
UCN guides

Moderator volume is detachable
58Ni coated about the flapper valve

Entirely new cryogenic system for
maintaining the moderator temperature

UCN source upgrade overview
• New source cryostat

- New design based on previous UCN source cryostat, which had been 
successfully operating since 2004 

- Dramatic, yet adiabatic changes 

- Optimize source cryostat and moderator geometry to improve UCN output 
(based on simulation that is benchmarked against the current source) 

- Replaceable moderator 

• New flapper valve design based on current successful model

- Most recent model has surpassed 1M cycles cold with UCN friendly 
materials 

- Tightly integrated with source cryostat design 

- Flapper drive components moved outside the UCN volume 

- Modify UCN tee geometry for improved UCN flow and reduced loss

13R.W. Pattie Jr (for the LANL Neutron Team) nEDM 2017 October 17, 2017 12/ 33



Commissioning of the upgraded Los Alamos Ultracold neutron source (LA-UR-17-29581)

Upgrade of the Source Insert and Guide system

Simulation Framework

Pucn = ρSD2np
∫ Eucn

0 Φn(E )σ(E )dE

Φn(E )- neutron flux

σ(E ) - production xs

ρSD2 - density of SD2

np - protons on target

Frie et al EPL
92 (2011)

Be Reflector

Graphite

LHe

HDPE

SD2
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Commissioning of the upgraded Los Alamos Ultracold neutron source (LA-UR-17-29581)

Upgrade of the Source Insert and Guide system

Moderator OptimizationOptimization of moderator material and temperature

16
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UCN production densityCold neutron flux

We chose to use cold 
polyethylene beads at 45 K, 
cooled by cold helium gas.
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Commissioning of the upgraded Los Alamos Ultracold neutron source (LA-UR-17-29581)

Upgrade of the Source Insert and Guide system

New Guide System

First 4 m of guide 15 cm
diameter to match the
source

After the ”Y” guides reduce
to 10 cm.

New UCN-line adds 7 m of
10 cm inside the biological
shielding
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Commissioning of the upgraded Los Alamos Ultracold neutron source (LA-UR-17-29581)

Upgrade of the Source Insert and Guide system

Guide Upgrades (Potential and loss factor)

Commercial Electroless
nickel phosphorus coating

Loss factor measured at
LANL and ILL using pinhole
bottling

f = 1.4(1)× 10−4

Fermi Potential measured by
Asterix at the Lujan Center

VF = 212(5) neV

R.W. Pattie Jr et al NIMA 872 (2017)

Table 3: The results of fitting Eq. 16 to the fill and drain timing data and the loss per bounce probability are summarized
below.

Guide ⌧s [s] ⌧l [s] µ̄[10�4] f [10�4] l [µm] f̄ [10�4]

1 19.5(4.3) 45.3(20.1) 2.0(1.2) 0.0(2.0) 178(23) 1.7(1)
2 26.4(8.3) 59.4(12.3) 1.4(0.4) 0.1(2.0) 92.7(8.1) 1.0(1)

1+2 28.3(9.1) 57.5(18.2) 1.7(0.7) 0.7(1.6) 110(350) 1.2(1)
3 19.1(5.5) 62.2(8.9) 1.6(0.3) 1.2(1) 0.0(140) 1.2(1)
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Figure 14: Top: The fit residuals normalized by the statis-
tical uncertainty of bin are shown for fit of Eq. 16 over the
entire range (solid circles) and over the draining time (open
circles). Error bars are 1�. Bottom: Data for combination
of guide 1 and 2 with the 1/4” pinhole plate is shown. The
data is fit using Eq. 16 for the entire time range (dashed
line) and over the draining time (solid line).

7. Discussion

The results presented in Table 2 and Table 3 show625

that the system loss-probability for UCN interacting stain-
less steel guides coated with 50 µm of nickel phospho-
rus and coupled with the design described in Section 3
is µ̄ = 1.4(1)⇥ 10�4. Analysis of ILL and LANL data-sets
based on the method discussed in Section 5.3.1 produced630

consistent values for µ̄ after accounts for the di↵erent ve-
locity distributions at each UCN source. However, the
results obtained from using the numerical method in Sec-
tion 5.3.2 were unstable when used to fit for the loss-factor
and gap length.635

Combining this work with the results of Tang et al[20]
indicates that nickel phosphorus is a commercially avail-
able low-depolarizing, low-loss coating for ultracold trans-
port guides. These qualities make NiP coatings ideal for
large UCN transport systems and have already been imple-640

mented in the upgrade of the LANL source. The electroless
coating process allow parts with complex geometries to be
uniformly coated.

8. Conclusions

We have measured the storage time of UCN in a nickel645

phosphorus coated bottle at two facilities with di↵erent
neutron velocity distributions. The results of these mea-
surements are used to determine loss-per-bounce probabil-
ity in the bottle of µ̄ < 2.0⇥10�4, which is fulfills the trans-
port requirements for upgrade of the LANL UCN source.650

The Fermi potential of the NiP coating, VF = 213(5) neV,
was measured at the Asterix time-of-flight spectrometer.
Transmission measurements determined that not electro-
polishing the surface of the stainless-steel guides prior to
coating has a detrimental e↵ect on the transmission of655

UCN.
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Commissioning of the upgraded Los Alamos Ultracold neutron source (LA-UR-17-29581)

Upgrade of the Source Insert and Guide system

Guide Upgrades (Depolarization)

UCN were polarized by a
6 T magnet

Coils maintained a ∼2 mT
holding field along the test
guides

Wrong spin UCN were
bottled between a shutter
and magnet

Right spin UCN could pass
through the magnet to
absorber

βNiP =
(
3.3+1.8

−5.6

)
× 10−6

Z. Tang et al, NIMA 827 (2016)

6	T	magnet	

UCN	
detector	

Coils		
(Coil	spacing	~	25	cm)	

100	cm	

56	cm	 58	cm	(along	the	axis)	

56	cm	

18	cm	

Cu	guides	

Test	sample	

Cu	guides	

UCN	shu@er	
with	a	pin	
hole	

UCN	gate	valve	
with	UCN	
absorber	on	the	
downstream	face	

UCN		

120	cm	

Figure 1: Schematic diagram of the experimental setup

pulsed 800-MeV proton beam striking a tungsten tar-
get were moderated by beryllium and graphite mod-
erators at ambient temperature and further cooled by
a cold moderator that consisted of cooled polyethy-
lene beads. The cold neutrons were converted to
UCNs by a solid deuterium (SD2) converter. UCNs
were directed upward 1 m along a vertical guide
coated with 58Ni and then 6 m along a horizontal
guide made of stainless steel before exiting the bi-
ological shield. At the bottom of the vertical UCN
guide was a butterfly valve that remained closed when
there was no proton beam pulse striking the spalla-
tion target in order to keep the UCNs from returning
to the SD2 where they would be absorbed.

A schematic diagram of the experimental setup for
the depolarization measurement is shown in Fig. 1.
When the UCN gate valve was opened, UCNs trans-
ported from the source entered the apparatus. UCNs
in one spin state, the so-called “high-field seekers” for
which µ ·B < 0 where µ is the magnetic dipole mo-
ment of the neutron and B is a magnetic field, were
able to move past the 6 T magnetic field provided
by a superconducting solenoidal magnet. UCNs in
the other spin state, the so-called “low-field seekers”,
were reflected back by the potential barrier due to
µ · B > 0. For |B| = 6 T, |µ · B| = 360 neV,
much larger than the kinetic energy of the neutrons
from the LANL UCN source, which has a cutoff at
≈190 neV.

On the other side of the high-field region was a
UCN guide system (76.2 mm in OD, 72.9 mm in ID)
that consisted of a set of copper guide sections, a
NiP-coated guide section, a section of a copper guide
with a UCN shutter, and a short section of a copper
guide followed by a UCN detector [28]. The guides
were placed in a ∼2 mT magnetic field provided by
a set of coils in order to retain the polarization of
the UCNs. The UCN shutter, made of copper, had
a pinhole 5 mm in diameter. The gap between the
UCN shutter and the end of the guide leading to it
was measured to be ∼0.05 mm.

The high-field seekers were able to move freely
through the high magnetic field region, colliding with
the inner walls of the guide system. The number of
collisions per second for the high-field seekers in the
guide system downstream of the 6 T field region is
given by

Rhfs =
1

4
Atot 〈vhfs〉nhfs, (1)

where Atot is the total inner surface of the system
that the high field seekers interacted with in the guide
system downstream of the 6 T field region, 〈vhfs〉 is
the average velocity of the high-field seekers, and nhfs
is the density of the high-field seekers. The rate of col-
lisions for the high field seekers was monitored during
this time by detecting neutrons that leaked through
a pinhole on the shutter in the downstream end of
the test guide assembly. If UCNs are detected at a
rate of Rh and the area of the pinhole is Ah, Rhfs can
be inferred to be

Rhfs =
Atot

Ah
Rh, (2)

assuming that the distribution of UCNs inside the
system is uniform and isotropic. We discuss the va-
lidity of this assumption in Sec. 3. For our geometry,
Atot/Ah = 3.36× 104.

While the high-field seekers collided with the inner
wall of the system at the rate of Rhfs, spin-flipped
neutrons were produced at a rate of

Rdep = Rhfs β =
Atot

Ah
Rh β, (3)

where β is the probability of spin flip per bounce.
While in principle β can depend on the neutron veloc-

3

known with sufficient accuracy. ( )P v t, depends not only on the
velocity distribution of the UCN entering the system but also on
the lifetime of high-field seekers in the system τ ( )vhfs . In turn,
τ ( )vhfs , as well as τ ( )vdep , depends not only on the surface-UCN
interactions but also on how the system was assembled, as for
many systems the UCN loss is dominated by gaps at joints be-
tween UCN guide sections.

Eq. (6) assumes [through Eq. (2)] that the distribution of UCNs
inside the system was uniform and isotropic. This assumption is
justified as follows. Firstly, the 1/e time to drain the system was
measured to be ∼3 s for C1 and C2, and ∼2 s for C3, by fitting the
“Cleaning” part of the neutron time spectra (such as the one shown in
Fig. 2). This indicates that the system reached a uniform density
within 2–3 s, a time scale much shorter than the loading time. Sec-
ondly, the transport properties of the UCN guides that we use are
typically well described with Monte Carlo simulations whenwe use a
nonspecularity of ϵ ∼ 0.03 or higher with the Lambertian angular
distributions for nonspecular reflection [34]. Since the mean free
path between collisions in a tube of radius R is 2R, UCNs undergo
nonspecular reflection approximately every ( ϵ) ∼R v2 / 0.6 s. This
indicates that UCNs in the system reached an isotropic distribution in
a time period much smaller than the loading time.

In the absence of sufficiently accurate experimentally obtained
information on ( )P v t, and τdep, we resorted to analysis models in
which approximations were made to Eq. (6) and evaluated the
effect of those approximations to the extracted values of β. Below
we describe the two specific analysis models we employed and the
results obtained from them.

3.1. Analysis Model 1

In this model, τdep is assumed to be independent of neutron
velocity v. With this assumption, Eq. (6) simplifies to

∫β= ( ) ( )
τ

+ − + −
N A

A
R t e dt.

7

T T T T t

dep
tot

h 0
h

L C L C
dep

From the experimentally measured ( )R th and Ndep, we obtained

the values of β for a set of assumed values for τdep. For the correct
value of τdep, β should be independent of TL and TC. Fig. 3 shows
plots of β for a set of values of τdep for both the TL and TC scans.

In this analysis, Ndep was determined by counting UCNs over a
period of 40 s after = +t T TcL and subtracting the background
estimated from the counts after the counting period.

From these results we see the following:

! β ∼ × −4 10 6 can describe data for all combinations of TL and TC
for all three configurations reasonably well except for =T 20 sC .

! The deviation for =T 20C s is larger for configurations C1 and C2
than for configuration C3.

The deviation of the data points for =T 20 sC from other data
points can be attributed to the fact that 20 s was not sufficiently
long to remove all the high-field seekers, and as a result there

Table 2
The values of TC and TL used for the loading-time and the cleaning-time scans.

Scan TL (s) TC (s)

Loading time scan 10, 20, 40, 60, 80 (C1 only) 60
Cleaning time scan 20 (C2), 50 (C1, C3) 20, 40, 60, 80

Fig. 2. Neutron count rate as a function of time obtained for configuration C2 for
=T 20 sL and =T 60 sC .
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Fig. 3. Plots of β for a set of values of τdep for both the TL and TC scans obtained
assuming Eq. (7). The error bar on each point represent the statistical uncertainty,
which is dominated by the counting statistics of Ndep.

Z. Tang et al. / Nuclear Instruments and Methods in Physics Research A 827 (2016) 32–38 35
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Commissioning of the upgraded Los Alamos Ultracold neutron source (LA-UR-17-29581)

Upgrade of the Source Insert and Guide system

Cold Neutron Flux BenchmarkingCold neutron (CN) measurement

18

CN Detector  

SPALLATION TARGET  

3.75 m3.75 m

Restricted the proton
pulse to a single bucket.

Pulse trigger defined t0

CN-Detector trigger
time defines the time-
of-flight.l

TOF measured at var-
ious SD2 volumes and
Moderator temperatures
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Commissioning of the upgraded Los Alamos Ultracold neutron source (LA-UR-17-29581)

Upgrade of the Source Insert and Guide system

Cold Neutron Flux SD2
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Commissioning of the upgraded Los Alamos Ultracold neutron source (LA-UR-17-29581)

Upgrade of the Source Insert and Guide system

Cold Neutron Flux Benchmarking (SD2 Volume)

CN TOF distributions
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Commissioning of the upgraded Los Alamos Ultracold neutron source (LA-UR-17-29581)

Upgrade of the Source Insert and Guide system

Cold Neutron Flux Benchmarking (Moderator
Temperature)

CN TOF distributions
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Commissioning of the upgraded Los Alamos Ultracold neutron source (LA-UR-17-29581)

West UCN-line Commissioning (2016-2017)

Density Measurements by V-activation

We want to measure the
UCN density in the guide
system.

1 cm diameter V foil fixed to
the inside of guide

We use a HPGe Detector to
measure the 1.4 MeV γ’s
60Co source used to
determine solid angle

R = 1
4vAρucn

51V + n→ 52V→ 52Cr + γ + β
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Commissioning of the upgraded Los Alamos Ultracold neutron source (LA-UR-17-29581)

West UCN-line Commissioning (2016-2017)

Density Measurements in the Original configuration
Locations of the UCN density measurements

20

UCNA/B experiment

UCNτ experiment

New nEDM experiment

Locations of the density measurements

New UCN guide
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Commissioning of the upgraded Los Alamos Ultracold neutron source (LA-UR-17-29581)

West UCN-line Commissioning (2016-2017)

Fill and Dump density measurementsPolarized UCN density in a dummy  nEDM cell

Polarized UCN density (E < 170 neV) at t=0 
• 12 UCN/cc from the fill and dump 

measurement (was 2.5 UCN/cc before 
the source upgrade ) 

• 36 UCN/cc from vanadium foil 
activation measurement 

The difference can be attributed to loss in 
the switcher and the finite detection 
efficiency.

Polarizing 
magnet (6 T)

Switcher
To UCN 
source

UCN detector

Cell valve

Cell  
(20 liters)

Vanadium foil

23
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Commissioning of the upgraded Los Alamos Ultracold neutron source (LA-UR-17-29581)

West UCN-line Commissioning (2016-2017)

Coupling productions and transport simulations

Use MCNP6 to
generate CN-Flux

Fold CN-Flux with
UCN prod. XS.

Input production
into a transport
model.

Compare to data.

Model assumptions : non-spec=0.06, f = 1.5× 10−4,
τSD2 = 49 ms, λSD2 = 4 cm.
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Commissioning of the upgraded Los Alamos Ultracold neutron source (LA-UR-17-29581)

West UCN-line Commissioning (2016-2017)

Comparison to Transport Monte CarloComparison with expectation

24

Simulated UCN density at the 
exit of the biological shield

Simulated polarized UCN density at the cell

70
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10

Measured

Measured
Simulated 

Simulated 

The difference between the measured and simulated stored cell density 
could be attributed to the transport downstream of the exit of the biological 
shield.

The simulation assumes the following parameters: 
• guide non-specularity = 0.06, guide loss per bounce = 150E-6,  
τSD2 = 49 ms, λSD2 = 4 cmMeasured upstream of

polarizer magnet

Consistent with transport
and production simulation

Measured density about
60% of MC prediction

Can be explained by
transmission through the
switcher
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Commissioning of the upgraded Los Alamos Ultracold neutron source (LA-UR-17-29581)

West UCN-line Commissioning (2016-2017)

Impact on the UCNτ experiment
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Statistical Precision over a Weekend

See R. W. Pattie Jr, et al arXiv:1707.01817

Demonstrated (∆τn)stat <1 s
precision over a weekend
(60 hrs)

5 such data sets collected to
explore systematic effects

trap depth ≈ 50 neV

Maximum unload 90k UCN

Typical unload 30k UCN

(∆τn)stat ≈ 0.6 s already
achieved this run cycle with 3
months remaining.
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Commissioning of the upgraded Los Alamos Ultracold neutron source (LA-UR-17-29581)

West UCN-line Commissioning (2016-2017)

Storage and Density MeasurementUCN density at the exit of the 
biological shield

22

Source 
upgrade 
project
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Commissioning of the upgraded Los Alamos Ultracold neutron source (LA-UR-17-29581)

North UCN-line Commissioning (2017)

The North UCN-Line

North UCN-Line open
for business and 95%
complete

New rotatory switcher
with minimal gaps
installed

Can operator
simultaneously with
UCNτ

Initial storage time test of Nickel Phosphorus cell shows a
density of ≈7 UCN/cc for a monitor rate of 350 UCN/s
(typically rate is ≈ 1000 UCN/s).
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Commissioning of the upgraded Los Alamos Ultracold neutron source (LA-UR-17-29581)

Future Upgrades

Light Enriched Uranium reflectors

Replace Graphite shell with
19.5% Enriched Uranium

Roughly factor of 2 increase
in CN flux 0-10 meV

LANL has the facilities to
machine a Uranium shell
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Commissioning of the upgraded Los Alamos Ultracold neutron source (LA-UR-17-29581)

Future Upgrades

Ongoing Facility Upgrades

Area C
(pRad)

LC-BM04

Currently we can only
run nights and weekends

If people are working in
the Proton Radiography
facility, we can not run

A few engineering
solutions will allow
almost 24 hour running:

1 Beam plugs
2 B/C Wall
3 Steering solution
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Commissioning of the upgraded Los Alamos Ultracold neutron source (LA-UR-17-29581)

Conclusions and Collaboration

UCN Source Team

LANL S. Clayton, S. Currie, D. E. Fellers,T. M. Ito, S.
MacDonald, M. Makela, C. Morris, R. W. Pattie Jr, J.
Ramsey, A. Saunders, C. O’Shaughnessy, S. Sjue, Z.
Tang, F. Trouw,H. Weaver, B. Zeck

U. of Kentucky B. Plaster

Yale U S. Lamoreaux

JINR E. Sharapov

Indiana U. E. Adamek, N. Callahan, C.-Y. Liu, J. Long, W. M.
Snow

NCSU A. Brandt, C. Cude-Woods, A. R. Young

ILL P. Geltenbort

VPI&SU X. Ding

Students
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Commissioning of the upgraded Los Alamos Ultracold neutron source (LA-UR-17-29581)

Conclusions and Collaboration

Conclusions

We have completed a 3 year upgrade of the LANL UCN
source (arXiv:1710.05182)

The result was a ×4.5 increase in the UCN density

This a possibility of increasing the production by another
factor of 1.8.

Ongoing improvements to the accelerator complex will roughly
double the UCN source up-time.

New buffer volume will be install on the West beam line
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