Development a High Intensity Ultra-Cold Neutron Source using Superfluid Helium at TRIUMF

> Shinsuke Kawasaki (KEK) for the TRIUMF Japanese-Canadian UCN Collaboration

outline

- Ultra-Cold Neutron (UCN)
- UCN production by super thermal method

 storage time
- ³He cryostat
- UCN source at TRIUMF
 - Vertical source <- was discussed by R. Matsumiya yesterday
 - new UCN source
 - with high cooling power
 - cooling scheme
 - temperature distribution
 - UCN production figure of merit as a function temperature
- Summary

Ultra Cold Neutron (UCN)

Ultra Cold Neutron

Energy	∼ 100 ne\
Velocity	∼ 5 m/s
Wave length	∼ 50 nm

Interaction

 $\begin{array}{ll} \mbox{Gravity} & 100 \ \mbox{neV/m} \\ \mbox{Magnetic field} & 60 \ \mbox{neV/T} \\ \mbox{Weak interaction} \\ \mbox{β-decay} & \mbox{n} \rightarrow \mbox{p} + \mbox{e} \\ \mbox{Strong interaction} \\ \mbox{Fermi potential} & 335 \ \mbox{neV} (\mbox{58Ni}) \\ \mbox{$atom distance : $\mbox{A} \\ \mbox{UCN feels average nuclear potential} \\ \end{array}$

UCN can be confine material bottle \rightarrow Use various experiments

UCN production by super fluid Helium

UCN procution

spallation neutron $\downarrow D_2O$, LD2 Moderator (300K, 20K) cold neutron \sim meV \downarrow Phonon scattering in He-II Ultra cold neutron \sim 100neV

Feature of our source

spallation neutron
 High neutron flux
 small distance between target and
 UCN production volume

• Super-fluid Helium converter long storage lifetime up-scattering by phonon $\tau_s = 600 \text{ s at } T_{HeII} = 0.8 \text{ K}$ $\tau_s = 36 \text{ s at } T_{HeII} = 1.2 \text{ K}$ $1/\tau_s \propto T^7$

UCN Storage Life Time

UCN density

 $= P\tau (1 - exp(-t/\tau))$

P : UCN production rate ∞ cold neutron flux

 τ : Storage time

t : proton irradiation time

- large cold neutron flux
- long τ

are important

UCN Storage Life Time

$$\begin{array}{l} 1/_{\tau} = 1/_{\tau_{up-scat}} + 1/_{\tau_{abs}} + 1/_{\tau_{wall}} + 1/_{\tau_{\beta}} \\ \tau_{abs} & : \text{absorption by }^{3}\text{He} & \ ^{3}\text{He}/^{4}\text{He} < 10^{-11} \\ \tau_{up-scat} & : \text{phonon up-scattering} & \ ^{3}\text{T}^{-7} \\ \tau_{wall} & : \text{wall loss} & \text{clean surface} \\ \tau_{\beta} & : \beta \text{ decay (886s)} \end{array}$$

UCN density during proton irradiation

³He cryostat

1.4K

- to keep He-II temp. 1.0K
- decompressed Helium 3
- ³He vs ⁴He
 - vapor pressure @ 0.8K
 - ³He: 9 Torr
 - ⁴He: 0.1 Torr
 - cooling power
 - @ 1.0 K with 10, 000 m³/hour pumping
 - ³He: 48 W
 - ⁴He: 1.1 W
 - Cooling power depend on temperature
 - larger vapor pressure in higher temperature
- ³He cooling
 - evaporated ⁴He gas
 - liquid He bath 4.2K
 - 1K pot (⁴He pumping)
 - ³He pumping < 1.0K

UCN Source @ TRIUMF

Major Milestone

- ✓ 2016 proton beam line for UCN source(BL1U 500MeV, 40µA)
 ✓ 2016 commissioning proton beam line and cold neutron production
 - 2017 UCN production by Vertical source (~ 1μA)
 - 2020 High intensity UCN source (40μA)

Vertical UCN source

- Vertical UCN source
 - developed at RCNP
 - T_{He-II} : 0.8 K
 - UCN life time: 81 sec
 - UCN density: 9 UCN/cm³

 $-400 \text{ MeV} \times 1 \mu\text{A} = 0.4 \text{ kW}$

Y, Masuda et. al., Phys. Rev. Lett. 108, (2012), 134801

move to TRIUMF

- modification for safety requirement
- 2017 Jan. Apr. install at Meson hall
- 2017 Nov. UCN production

new UCN source

proton beam power

0.4 kW at RCNP -> 20 kW at TRIUMF

A new helium cryostat which has high cooling power is necessary

Heat load on He-II depends on geometry

- distance between target and He-II
- cold moderator
- gamma shield and so on

- higher cold neutron flux cause higher heat load
- ratio of this is constant in some region

Optimization is necessary

LD₂ Moderator Cryostat

5 – 9 times large cold neutron flux is achivable compared with ice D_2O

UCN Production Figure of Merit

ideal case: ³He temperature is same as UCN production volume

- UCN density $\rho \propto P x \tau$
 - P: production rate
 ∞ cold neutron flux
 ∞ heat load
 = cooling power (function of T)

 ∞ Vapor pressure * latent heat

- $-\tau$: UCN life time
 - $1/\tau = 1/\tau_{\beta} + r^* 1/\tau_{upscat} + 1/\tau_{wall}$ - $\tau_{\beta} = 880s$
 - $-\tau_{upscat} \propto T^{-7}$
 - $1/\tau_{wall}$: ~100sec (depend on surface quality)

Figure of Merit (FOM) as a function of T FOM = Cooling power x τ

In Reality

- There is temperature difference between UCN production volume and ³He
 - UCN lifetime
 - temperature at UCN production volume
 - cooling power
 - ³He temperature
- The temperature difference is caused by following reason
 - deposit heat at UCN production volume
 - Heat transfer in He-II
 - Kapitza conductance of heat exchanger

Heat load on UCN production volume

deal with such a

around 1 K

Will be discussed by S. Wolfgang

RTRIUMF

- Radial LD₂ layer more important than lower
- Best He-II-bottle height 30-40 cm, radius 15-20 cm (for current cooling scheme)
- Limited by amount of LD₂!
- For He-II height 30 cm, radius 15 cm, 40 μA beam:
 - 20.6 | He-II, 115 | LD₂
 - 3.9·10⁷ UCN/s
 - 7.9 W max. heat in He-II huge heat load
 - 65 W max. heat in LD₂
- Best strategy to reduce LD₂: reduce He-II size and go closer to target

2017-10-18

13 cm

13

Preliminary results

Lead

Heat transfer between heating point and cooling point

- Heat transfer in He-II
 - below 1 K, heat transfer is not good because of low fraction of normal fluid which convey heat (two fluid model)
- Kapitza conductance of heat exchanger
 - Conductance at the surface between liquid and solid is small at low temperature

Superfluid Helium

Two Fluid Model

	Normal fluid	Superfluid
Viscosity	H _n	η _s = 0
Entropy	S _n	$S_s = 0$

- Ratio of super/normal component depends on temperature dependence.
- fraction of normal mode become small in low temperature.

<u>Heat transport</u>

- Since superfluid has no entropy, heat is transported only by normal fluid.
- Heat transport in low temperature (< 1K) become small because of small fraction of normal fluid

Heat source

Gorter-Mellink Equation

$$q_j(\mathbf{r}) = -\left(f(T)^{-1}\frac{\partial T(\mathbf{r})}{\partial x_j}\right)^{1/3}, \quad f(T) = \frac{A_{gm}\rho_n}{\rho_s^3 s^4 T^3}$$

 $q_j(\mathbf{r})$: [W/m²] Heat Flux vector at \mathbf{r} . $f^{-1}(T)$: [W³/m⁵ K] Heat transfer function. ($\Leftrightarrow q_j = -\lambda \partial_j T$) A_{gm} : Gorter-Mellink mutual friction parameter, [m·sec].

f(T)⁻¹ : Heat transfer function of He-II based on Two fluid model

Temperature difference in He-II

Chamber temperature, T_H , can be solved numericall using following Gorter-Mellink equation.

$$Q_{in} = \left(\frac{A^3}{L} \int_{T_L}^{T_H} f(T)^{-1} dT\right)^{1/3} A$$

A : cross section of He-II L : distance of heat transfer

Kapitza Conductance

- Kapitza conductance, $h_{\kappa}(T)$ is a function of temperature.
- There are several theory on Kapitza conductance.
 - Phonon limit
 - $h_{\kappa}(T) \simeq 4500 T^3 [W/m^2K]$
 - 2 10 times larger than measured
 - Khalatnikov theory
 - $h_{\kappa}(T) \simeq 20 T^3 [W/m^2K]$
 - 10 100 times smaller than measured
- Experimental data strongly depends on surface quality
 - plan to measure Kapitza conductance of material before fabricating a heat exchanger

Kapitza conductance between Copper and He-II Helium cryogenics, Steven W. Van Sciver

- Cu Heat exchanger should be plated by Ni Kapitza conductance between Cu-Ni is large enough since junction is solid-solid
- Kapitza conductance between Ni and He-II $h_{K Ni}(T) = f^{*}h_{K_{Cu}}(T)$ f = 0.61
- Kapitza conductance between Cu and 3He h_{κ} (HeII) = (1.2 2.6) h_{κ} (3He)

ex) average quality of Cu, 10 W heat load

- junction between He-II and Ni
 - h_{K Ni} (1.0K) = 244 [w/m2 K]
 - ΔT _{He-II Ni} = 0.16 K
 - T_{Ni} = 0.84 K
- junction between Cu and 3He
 - h_{K Ni} (0.84K) = 232 [w/m2 K]
 - ΔT _{He-II Ni} = 0.09 K

•
$$T_{3He} = 0.75 \text{ K}$$
 19

Equilibrium temperature

Equilibrium temperature can be calculated as a function heat load.

example)

d = 150 mm, L = 1,000 mm pumping speed 10,000 m³/hour Heat load : 10 W case

Temperature distribution

T_{He-II H} : 1.06 K (
$$\tau_{up-scat}$$
 = 87 sec)
T_{He-II L} : 1.00 K
T_{Cu H} : 0.84K
T_{Cu L} : 0.83 K
T_{3He} : 0.75 K
ΔT = 0.31 K

20

FOM in real case

temperature increase between UCN production volume and ³He is take into account L = 1000mm, d = 150 mm

FOM = Cooling power $x \tau$

21

Effect of He-II Volume ratio

- Volume ratio of He-II and Vacuum is also important parameter.
- Total lifetime is increase when volume ratio is small
- UCN scattering with vapor He become serious when He-II temperature above 1.4 K

He-II cryostat

- A new He-II cryostat is been developing
 - TRIUMF proton beam line BL1U

500 MeV \times 40 μ A = 20 kW

- necessary cooling power is around 10 W at 1.0 K
- Heat conductance is important
 - inside He-II
 - Kapitza conductance between He-II/3He and heat exchanger
- FOM can be calculated as a function of temperature
 FOM = cooling power × UCN life time
- Optimum working temperature is around 1.0 1.2K

Second UCN port : Y switch

- Bend is necessary for radiation protection
 not to see target area directly
- Y switch can be diverted UCN to another area.
 - R&D for UCN guide, detector and so on
 - open for user facility in future

Summary

- We will start UCN production with vertical UCN source comes from RCNP
 - limit of proton beam power is \sim 0.5 kW due to small cooling power
- High intensity UCN source is been developed
 - proton beam power : 500 MeV * 40 μ A = 20 kW
 - new ³He cryostat with higher cooling power
 - necessary cooling power : ~10 W at 1.0 K
 - FOM can be calculated as a temperature
 - optimum temperature is 1.0 1.2 K
 - Final optimization is on going
 - > 2.3 × 10⁷UCN/sec.
 - > 600 UCN/cc at EDM cell -> statistical error of 10⁻²⁷ ecm / 100 MT day
 - Plan to produce UCN from 2020