PAUL SCHERRER INSTITUT

Paul Scherrer Institut

G. Bison for the nEDM collaboration

Magnetometry for next generation neutron EDM experiments

Hg comagnetometer

- Primary magnetic field reference

Cs magnetometer array

- Field homogenization
- Secondary magnetic field reference
- Monitor for fast field & gradient changes
- possible upgrade to vector readout

³He magnetometer array (upgrade)

- Absolute magnetometer
- Field homogenization
- Secondary magnetic field reference

Statistical Magnetometer Performance

Statistical Magnetometer Performance

Laser Setup for the Hg Magnetometer

Laser Setup for the Hg Magnetometer

CEIStatistical Magnetometer PerformanceNeutron spin precession frequency $h\nu_L = -2 \mu B_0 \pm 2 d E_0$ 10^{-12} $\frac{n2EDM}{meas.}$ 10^{-12} $\frac{n2EDM}{meas.}$ 10^{-12} $\frac{n2EDM}{meas.}$

Gradient extraction: Order 5: 48 DOF, Order 7: 80 DOF, Order 9: 120DOF

Optical multichannel room temperature magnetic field imaging system for clinical application G. Lembke, S. N. Erné, H. Nowak, B. Menhorn, A. Pasquarelli, and G. B. Biomed. Opt. Express, 5(3):62–65, 2014.

A sensitive and accurate atomic magnetometer based on free spin precession. Z. D. Grujic, P. A. Koss, G. B., and A. Weis. Eur. Phys. J. D, 69(5), 2015.

no light shift (?) no magnetic cross-talk much less offset effect

He Magnetometer

metastable exchange optical pumping

Design and performance of an absolute ³He/Cs magnetometer H.-C. Koch, G. Bison, Z. D. Grujić, W. Heil, M. Kasprzak, P. Knowles, A. Kraft, A. Pazgalev, A. Schnabel, J. Voigt, A. Weis. Eur. Phys. J. D 69:202 (2015) Investigation of the intrinsic sensitivity of a ³He/Cs magnetometer. H.-C. Koch, G. Bison, Z. D. Grujić, W. Heil, M. Kasprzak, P. Knowles, A. Kraft, A. Pazgalev, A. Schnabel, J. Voigt, A. Weis Eur. Phys. J. D 69: 262 (2015).

Sussex RAL ILL • LNPI/PNPI

Outlook

Theoretical data from «Particle electric dipole moments» J.M. Pendlebury & E.A. Hinds, NIM A 440 (2000) 471

The nEDM Collaboration

Backup

False EDM

-

$$\Delta \omega = \frac{\gamma^2 B_{xy}^2}{2(\omega_L \pm \omega_r)}$$

$$= \Delta \omega_{EE} + \Delta \omega_{GG} + \Delta \omega_{EG}$$
EDM-like signal: proportional to the E-field and the B-field gradient
$$d_{\text{false}} = \frac{\hbar \gamma_{Hg} \gamma_n}{2c^2} \langle x B_x + y B_y \rangle$$

Pignol & Roccia, Phys. Rev. A 85, 042105 (2012)

FED Filling the Precession Chamber

FED Filling the Precession Chamber

FED Filling the Precession Chamber

-

Hg readout

function generator ν_{rf}

Neutron Detection

