

P. Flaux, T. Lefort, G. Ban, D. Goupillière, Y. Lemière, B. Dechenaux

nEDM2017 Workshop

October 15-20, 2017

UNIVERSITÉ CAEN NORMANDIE

Harrison Hot Springs

1

Summary

I. B₀ coil design and performances –

- Purpose of a uniform magnetic field
- Uniformity requirements
- Shield design
- B₀ coil design in the shield
- Field Uniformity of the B₀ coil
- Harmonic Decomposition & Single Value Decomposition method

II. Technical design of the B₀ coil –

- Mechanical solutions
- Influence of the wire positioning
- Mechanical Imperfections
- Correcting Coils

17 - 23

3 - 16

Purpose of a uniform magnetic field

 \rightarrow H = - μ_n .B - d_n.E

- → 2 configurations : **B** // **E**, **B ∦ E**
- → neutron EDM : $d_n = h(f_{n\uparrow\uparrow} f_{n\uparrow\downarrow})/4E$ → statistical error : $\sigma(d_n) = \hbar/(2\alpha ET\sqrt{N})_{H=29 cm}$

- → Need a system producing a very uniform magnetic field B
 - → In order to avoid neutron depolarisation
 - → In order to suppress systematics effects (motional EDM)
 - → In order to maximize statistical sensitivity

Uniformity requirements

Field at the center of the coil	$B_0 = 1 \mu T$
Neutron depolarisation ¹ (< 2 %)	$\partial_x B_z = G_{1,-1}, \ \partial_y B_z = G_{1,1} < 8 \text{ pT.cm}^{-1}$
Statistical sensitivity : RF-pulse (α_{loss} < 2 %)	$\partial_z B_z = G_{1,0} < 0.7 \text{ pT.cm}^{-1}$
¹⁹⁹ Hg motional false EDM	G _{1,0} corrected
crossing point technique ²	G _{3,0} < 3.3.10 ⁻⁵ pT.cm ⁻³
$d_n^{false} < 5.10^{-28} e.cm$	G _{5,0} < 1.1.10 ⁻⁸ pT.cm ⁻⁵
	(D = 100 cm, H = 12 cm, H' = 17 cm)

¹C. L. Bohler and D. D. McGregor, PRA 49 MC Gregor (1994), https://doi.org/10.1103/PhysRevA.49.2755

²G. Pignol, S. Roccia, Electric-dipole-moment searches: Reexamination of frequency shifts for particles in traps, Phys. Rev. A 85 (4) (2012) 042105

How is produced the B₀ field

\rightarrow B₀ coil is inside the shield

B₀ coil design in the shield

Side view

B0 coil : Cubic Solenoïd + holes by pass ...

 $1/4^{th}$ of the B₀ coil + first layer of the shield

Mu-metal shield 2.71 m Coil z▲ Х **B** field 2.73 m

B₀ coil design in the shield

B0 coil : Cubic Solenoïd + holes by pass + Endcaps wire loops

Wire loops « Lamé Curves » at the endcaps (Top View)

B_0 coil design in the shield

 $1/4^{th}$ of the B₀ coil + first layer of the shield

Coil Side	273	0 mm	
Coil Height	2710 mm		
Wire spacing (side)	15	mm	
Number of loops (side)	1	181	
Number of loops (endcaps)	7	x 2	
Number of loops (total)	195		
Wire current	11.9	75 mA	
Wire length (total)	~ 22	100 m	
Resistance (\mathscr{D}_{w} = 1,5 mm, copper) ~ 2	20 Ω	
	a (mm)	n	

		a (mm)		
		1365	0.25	
Lattle Curves.		1355	0.3	
$x = a.cos^{n}(\theta)$;	with	1345	0.3	
$y = a.sin^{n}(\theta);$	vvicii	1335	0.3	
		1315	0.3	
$\theta \in [0,\pi/2]$.		1305	0.3	
		1005	0.25	

B_0 coil design in the shield

Simulated coil : 3 symmetric and antisymmetric current plans

- \rightarrow XY plan at z = 0 m (symmetric)
- \rightarrow XZ plan at y = 0 m (antisymmetric)
- \rightarrow YZ plan at x = 0 m (antisymmetric)

1/8th of the coil is simulated

		Field Components			
		Bx(x,y,z)	By(x,y,z)	Bz(x,y,z)	
Symmetries	$X \rightarrow -X$	- Bx(-x,y,z)	By(-x,y,z)	Bz(-x,y,z)	
	$Y \rightarrow -Y$	Bx(x,-y,z)	- By(x,-y,z)	Bz(x,-y,z)	
	Z→ -Z	- Bx(x,y,-z)	- By(x,y,-z)	Bz(x,y,-z)	

Field symmetries

y [m]

Field Uniformity of the B₀ coil

Uniformity: $U(\vec{r}) = \frac{|\vec{B}(\vec{r}) - \vec{B}(\vec{0})|}{|\vec{B}(\vec{0})|}$; B(0) = 1.00002 µT

Horizontal plane (z = 0 m)

Harmonic Decomposition

 \rightarrow Magnetic field can be expressed as a linear combination of harmonic polynomials Hx, Hy, Hz

Magnetic Field at r Gradient		B(r)	$= \Sigma_{l,m} G_{l,m} H$	x,l,m(r) y,l,m(r) z,l,m(r)	Harmonic polyno of degree I a	omials t r
Amplitude (l,m)		m	Hx	Ну	Hz	n°
	0	-1	0	1	0	1
	0	0	0	0	1	2
	0	1	1	0	0	3
	1	-2	У	х	0	4
	1	-1	0	Z	У	5
	1	0	-x/2	-y/2	z	6
	1	1	z	0	х	7
	1	2	Х	-у	0	8
	2	-3	2xy	x² - y²	0	9

Single Value Decomposition method (SVD)

Single Value Decomposition method (SVD)

Н

```````````````````````````````````````				
$B_x(0)$	$(H_{x01}(0))$	$H_{x00}(0)$	$H_{x01}(0)$	 $H_{x78}(0)$
$B_y(0)$	$H_{y01}(0)$	$H_{y00}(0)$	$H_{y01}(0)$	 $H_{y78}(0)$
$B_{z}(0)$	$H_{z01}(0)$	$H_{z00}(0)$	$H_{z01}(0)$	 $H_{z78}(0)$
$B_x(1)$	$H_{x01}(1)$	$H_{x00}(1)$	$H_{x01}(1)$	 $H_{x78}(1)$
$B_{y}(1)$	$H_{y01}(1)$	$H_{y00}(1)$	$H_{y01}(1)$	 $H_{y78}(1)$
$B_{z}(1)$	H 201(1)	$H_{z00}(1)$	$H_{z01}(1)$	 $H_{z78}(1)$
$B_x(n)$	$H_{x01}(n)$	$H_{x00}(n)$	$H_{x01}(n)$	 $H_{x78}(n)$
$B_y(n)$	$H_{y01}(n)$	$H_{y00}(n)$	H _{y01} (n)	 $H_{y78}(n)$
B_(n)	$\langle H_{z01}(n)$	$H_{z00}(n)$	$H_{201}(n)$	 H ₂₇₈ (n)
/				

# Harmonic polynomials values for the same points

I	m	H _x	H _y	H _z	n°
0	-1	0	1	0	1
0	0	0	0	1	2
0	1	1	0	0	3
1	-2	У	х	0	4
1	-1	0	Z	У	5
1	0	-x/2	-y/2	Z	6
1	1	Z	0	х	7
1	2	х	-у	0	8
2	-3	2xy	x² - y²	0	9



### Single Value Decomposition method (SVD)





 $\rightarrow$  Magnetic field is decomposed on a harmonic polynomial basis

 $\mathbf{B}(\mathbf{r}) = \Sigma_{\mathrm{I,m}} \mathbf{G}_{\mathrm{I,m}} \; \mathbf{H}_{\mathrm{I,m}}(\mathbf{r})$ 

		Field Components			
		Bx(x,y,z)	By(x,y,z)	Bz(x,y,z)	
Symmetries	X → -X	- Bx(-x,y,z)	By(-x,y,z)	Bz(-x,y,z)	
	Y → -Y	Bx(x,-y,z)	- By(x,-y,z)	Bz(x,-y,z)	
	Z→ -Z	- Bx(x,y,-z)	- By(x,y,-z)	Bz(x,y,-z)	

→ Terms who don't respect thoses symmetries are **forbidden** 

 $\rightarrow$  Theirs assiocated G_{I,m} must be equal to 0 pT.cm⁻¹



# Harmonic Decomposition of B₀ coil

#### Performed with 10 000 points, volume of interest of 1 m³ (x,y,z $\in$ [-0.5 ; 0.5] m)



Forbidden terms / Allowed terms : at least 10⁻³

Forbidden terms  $\rightarrow$  finite discretisation of space



# Mechanical solutions – n2EDM BenCo

- Plan to use grooved plexiglas plates : - groove path =  $B_0$  coil design
  - wires stuck in the grooves



Without door and right panel



Plexiglass prototype



A wire oscillating inside a groove on the plexiglass prototype.

#### $\rightarrow$ Influence of the mechanical imperfections ?



# Influence of the wire positionning

Random wire displacements ;

Two different type of movements were studied : -

Random wire oscillations.

 $\rightarrow$  Z-symmetry broken :  $G_{1,0}$ ,  $G_{1,2}$ ,  $G_{3,0}$ ,  $G_{3,2}$ ,  $G_{3,4}$ ,  $G_{5,0}$  ... gradients allowed





# Influence of the wire positionning

### $\rightarrow$ Z-symmetry broken : $G_{_{1,0}}$ , $G_{_{1,2}}$ , $G_{_{3,0}}$ , $G_{_{3,2}}$ , $G_{_{3,4}}$ , $G_{_{5,0}}$ ... gradients allowed



→ Gradients under requirements even for unrealistic wires movements



### **Mechanical Imperfections**

Type of imperfection :	Impact on the magnetic field :			
Individual wires movement Δz = 2 mm				
Modification of shield $\mu_r$ on top/bottom (at most ± 20%)				
Vertical precession chamber displacement $\Delta z = 10 \text{ cm}$	Requirements fulfilled			
Horizontal B0 coil displacement (along x, y axis) with respect to the shield Δz = 5 mm				
Vertical B0 coil displacement (along z axis) with respect to the shield	$G_{1,0}$ out of range for $\Delta z = 0.25$ mm $G_{1,0} \& G_{3,0}$ out of range for $\Delta z = 1$ mm			
$\rightarrow$ Conclusion : the vertical positionning have to be very precise				

but very hard at the level of 0.25 mm,

 $\rightarrow$  need for correcting coils



### **Correcting coils**

Several possibilities : Dedicated coil and/or set of coil

- Dedicated correcting coil¹ for every important gradient (G_{1.0}, G_{3.0}, etc.):
  - Design from laplace equation & bondaries conditions
  - Shape of such coils can be rather complicated



Single layer G_{3,0} coil



Single layer  $G_{5,0}$  coil



Single layer G_{6,0} coil

¹Magnetic fields for the SNS neutron EDM experiment, Chris Crawford, PSI UCN Seminar, 2012-06-28



### **Correcting coils**





### Conclusion

 $\rightarrow$  « Perfect Coil » fulfilled the requirements

- $\rightarrow$  Wire displacements and oscillations
- $\rightarrow$  x & y global displacement of the coil
- $\rightarrow$  Shield relative permeability
- $\rightarrow$  Displacement of the precession chamber

→ But : Global vertical displacement of the  $B_0$  coil →  $G_{1,0}$  out of range with  $\Delta z = 0.25$  mm

ightarrow Solving the problem by :

- Find the best position of  $B_0$  with respect to the shield

 $\rightarrow$  Field map measurements

Hovever all imperfections have not been simulated, which may produce out of range gradients

→ A set of correcting coils is required (work on going)

Thank you for your attention !







Origin of numerical noise	- 25
Mechanical Imperfections results	- 31
Influence of the B0 coil with and without shield —	- 39
Basis of harmonic ploynomials (up to I =2)	- 45
Summary of allowed gradients (up to I=2) —	- 46
Geometrical modifications since Feb. 2017	- 47
Details on mechanical solutions —	- 48
Shield deformation —	- 49
Main statistics and systematics effects	- 53



# Robustness of the simulation

- COMSOL influence :

- Meshing Size  $\rightarrow$  Low impact on the harmonic decomposition

- Interpolation order  $\rightarrow$  2nd order precise enough

- SVD influence :

- SVD numerical background  $\rightarrow$  Forbidden/Allowed ~ 10⁻⁹
- Density of points  $\rightarrow$  Optimal combination : 10000 pts, V = 1 m³

Allowed gradients are not influenced by the simulation parameters. Only forbidden gradients (numerical noise) are moderatly changing

The simulation is robust



# **COMSOL** meshing size

#### Normal mesh : Tetrahedrals and triangular elements Max length of elements in 1 m³ < 20 cm





Coarse mesh



Used mesh



Extremely fine mesh

No changes on allowed terms Low changes for numerical background

 $\rightarrow$  Low impact of COMSOL meshing size



# Influence of the element order

Element order = order of interpolation of the magnetic field between two nodes of the element



 $\rightarrow$  Gain at most factor 10, but calculation loads x5

└keep on working with second element order.



- $\rightarrow$  Allowed terms well reproduced
- $\rightarrow$  Forbidden terms set to 0  $\rightarrow$  Harmonic Decomposition background

Background/Allowed at least  $10^{-9}$  (for 10 000 points and V =  $1m^3$ )



# Influence of the density of points for SVD



→ 1000 to 10 000 pts : factor 10 → 10 000 to 15 000 pts : about the same → over 15 000 pts : out of calculations

10 000 points chosen for the SVD

nEDM2017 Workshop, 19/10/2017, FLAUX Pierrick



# Influence of the density of points for SVD



→ 8 m³ to 1 m³ : factor ~100 before l= 3 , factor ~10 after → 1 m³ to 0.125 m³ : factor ~10 on  $G_{0,-1} \& G_{0,1}$  , getting worse after l=6

 $V = 1 m^3$  chosen



# Influence of the wire positionning

Two different type of movements were studied :

- Random wire displacements

Side wires	$z_{wires} = z_{init} + z_{displacement}$
Lamé curves	$x_{lame} = (a + x_{displacement}).cos^{n}(\theta)$ $y_{lame} = (a + y_{displacement}).sin^{n}(\theta)$
With {x,y	$y_{z}_{displacement} \in [-0.25; 0.25] mm (realistic)$

# - <u>Random wire oscillations</u>

Side wires $Z_{wires} = Z_{init} + A.cos(v_z.\theta + \phi)$ Lamé<br/>curves $X_{wires} = a.cos^n(\theta) + A.cos(v_x.\theta + \phi)$  $y_{wires} = a.sin^n(\theta) + A.cos(v_y.\theta + \phi)$ With $\{v_{x'}v_{y'}v_z\} \in [0; 366] m^{-1}$  (test on prototype :  $v_z = 27 m^{-1}$ )<br/> $\phi \in [0; 2\pi] rad$ 

 $A \in [-0.25; 0.25] \text{ mm}$  (realistic) Or  $\in [-2.00; 2.00] \text{ mm}$  (extreme case)





# Main gradients from wire positionning

Wire movements	Gradient Requirements	w/o movements	W _{disp} ∈ [-0.25 ; 0.25 ] mm	W _{disp} ∈ [-2.00 ; 2.00 ] mm	W _{osc} ∈ [-0.25 ; 0.25 ] mm	W _{osc} ∈ [-2.00 ; 2.00 ] mm
B _{center} [pT]	<b>= 1.10</b> ⁶	1.0000.10 ⁶	1.0000.10 ⁶	1.0000.10 ⁶	1.0000.10 ⁶	$0.9999.10^{6}$
G _{0,0} [pT]	—	1.00.10 ⁶	1.00.10 ⁶	1.00.10 ⁶	1.00.10 ⁶	1.00.10 ⁶
G _{1,-1} [pT.cm ⁻¹ ]	< 8	<b>3.36.10</b> -6	<b>-8.87.10</b> ⁻⁶	<b>-7.61.10</b> ⁻⁷	<b>-1.07.10</b> ⁻⁵	-1.37.10 ⁻⁷
G _{1,0} [pT.cm ⁻¹ ]	< 0,7	-2.00.10 ⁻⁵	-3.37.10 ⁻²	-1.45.10-1	-4.23.10-2	-6.58.10 ⁻¹
G _{1,1} [pT.cm ⁻¹ ]	< 8	-4.31.10 ⁻⁵	-2.14.10-4	2,11.10-4	2.10.10-4	2.11.10-4
G _{3,0} [pT.cm ⁻³ ]	< <b>3.3.10</b> ⁻⁵	7.99.10 ⁻⁸	1.89.10 ⁻⁶	1,64.10 ⁻⁵	1.04.10-6	-7.18.10 ⁻⁶
G _{5,0} [pT.cm ⁻⁵ ]	< <b>1.1.10</b> ⁻⁸	2.39.10 ⁻¹¹	5.80.10-10	3.81.10 ⁻⁹	2.77.10 ⁻¹¹	3.14.10-10



nEDM2017 Workshop, 19/10/2017, FLAUX Pierrick



### Displacement of the B₀ coil with respect to the shield

#### Displacements of the $B_0$ coil along x axis :



#### Harmonic Decomposition

 $\rightarrow$  The requirements are fulfilled even a x = 5 mm displacement



### Displacement of the B₀ coil with respect to the shield

#### Displacemements of the B₀ coil along y axis :



#### Harmonic Decomposition

 $\rightarrow$  The requirements are fulfilled even a y = 5 mm displacement



### Displacement of the B₀ coil with respect to the shield

#### Displacements of the $B_0$ coil along z axis :



Harmonic Decomposition

 $\rightarrow$  G_{1.0} requirement excedeed after z = 0.25 mm displacement

 $\rightarrow$  G_{1.0} & G_{3.0} requirements excedeed after z = 1 mm displacement



Displacements of the  $B_0$  coil along x, y and z axis :

- $\rightarrow$  X-symmetry broken :  $G_{1,1}$ ,  $G_{3,1}$ ,  $G_{3,3}$  ... gradients allowed
- $\rightarrow$  Y-symmetry broken :  $G_{1,-1}$ ,  $G_{3,-3}$ ,  $G_{3,-1}$  ... gradients allowed
- $\rightarrow$  Z-symmetry broken :  $G_{1,0}$ ,  $G_{1,2}$ ,  $G_{3,0}$ ,  $G_{3,2}$ ,  $G_{3,4}$ ,  $G_{5,0}$  ... gradients allowed

B _o movements	Gradient Requirements	w/o movements	z _d = 0.25 mm	$z_d = 1 \text{ mm}$	z _d = 5 mm	x _d = 5 mm	y _d = 5 mm
B _{center} [pT]	= <b>1.10</b> ⁶	$1.0000.10^{6}$	1.0000.10 ⁶	1.0000.106	1.0000.106	1.0000.106	1.0000.106
G _{0,0} [pT]	—	1.00.10 ⁶	1.00.10 ⁶	1.00.10 ⁶	1.00.106	1.00.10 ⁶	1.00.10 ⁶
G _{1,-1} [pT.cm ⁻¹ ]	< 8	3.36.10 ⁻⁶	<b>-1.07.10</b> ⁻⁵	<b>-6.26.10</b> -5	-2.94.10 ⁻⁵	-8.55.10 ⁻⁵	2.87.10-1
G _{1,0} [pT.cm ⁻¹ ]	< 0,7	-2.00.10-5	1.60	6.43	32.5	-5.93.10 ⁻⁵	2.16.10-5
G _{1,1} [pT.cm ⁻¹ ]	< 8	-4.31.10-5	-2.10.10-4	1.60.10-4	1.78.10-4	2.99.10-1	1.26.10-4
G _{3,0} [pT.cm ⁻³ ]	< 3.3.10⁻⁵	7.99.10-8	<b>1.69.10</b> -5	-6.78.10-5	3.38.10-4	-2.83.10-8	-5.78.10 ⁻⁹
G _{5,0} [pT.cm ⁻⁵ ]	< 1.1.10 ⁻⁸	2.39.10-11	-1.30.10-9	-5.66.10 ⁻⁹	-2.87.10-8	4.76.10-12	3.20.10-12

- $\rightarrow$  large x & y displacement  $\rightarrow$  gradients OK
- $\rightarrow$  z displacement of 0.25 mm  $\rightarrow$  G_{1.0} requirement exceeded

nEDM2017 Workshop, 19/10/2017, FLAUX Pierrick

Forbidden Gradients

Gradient above

requirement



Displacement of the precession chamber with respect to the B₀ coil and the shield

#### Harmonic Decomposition



 $\rightarrow$  Weak increase of the background (max ~ factor 15)

 $\rightarrow$  Weak emergence of Z-symmetry breaks gradients for big displacements (5, 10 cm)

└ Sood uniformity on the chambers area



### Influence of the shield relative permeability

 $\rightarrow$  Ordinary relative permeability of the shield  $\mu_r$  = 350,000 changed for the top & bottom layers Harmonic Decomposition



 $\rightarrow$  Breaks z-symmetry :  $G_{1,0}$ ,  $G_{1,2}$ ,  $G_{3,0}$ ,  $G_{3,2}$ ,  $G_{3,4}$ ,  $G_{5,0}$  etc. are allowed

→ Even +20%/-20 % difference of permeability ( $\mu_r$ (top) = 420,000 ,  $\mu_r$ (bottom) = 280,000 ) stays under requirements (but close to it)





→ Without shield, Global loss of uniformity (all gradients become bigger) ;





 $\rightarrow$  Displacement of z = 0.25 mm without shield

 $\square$  A little bit under the requirements for  $G_{1.0}$ 





 $\rightarrow$  Displacement of z = 1.00 mm without shield

 $\square$  A little bit under the requirements for  $G_{3,0}$ 





 $\rightarrow$  Displacement of z = 5.00 mm without shield

 $\square$  A little bit under the requirements for  $G_{5.0}$ 





 $\rightarrow$  Displacement of z = 5.00 mm without shield

 $rac{}{}$ Still under the requirements for  $G_{5.0}$ 





→ Without shield, Global loss of uniformity (all gradients become bigger) ; → But weaker dependence on the global  $B_0$  coil vertical displacement

└ Modifying coil-shield distance may help to reduce this dependence



# Basis of harmonic polynomials (up to I=2)

- I	m	H _×	Η _ν	H _z	n°
0	-1	0	1	0	1
0	0	0	0	1	2
0	1	1	0	0	3
1	-2	У	х	0	4
1	-1	0	Z	У	5
1	0	-x/2	-y/2	Z	6
1	1	Z	0	х	7
1	2	х	-у	0	8
2	-3	2ху	x ² -y ²	0	9
2	-2	2yz	2xz	2ху	10
2	-1	-ху/2	$(x^2 + 3y^2 - 4z^2)/4$	2yz	11
2	0	-XZ	-YZ	$z^{2}-(x^{2}+y^{2})/2$	12
2	1	$(3x^2+y^2-4z^2)/4$	-xy/2	2xz	13
2	2	2xz	-2yz	x ² -y ²	14
2	3	x ² -y ²	-2xy	0	15
		l= 0	l= 1	l= 2	



# Summary of allowed gradients (up to I=2)







#### **Forbbiden Gradients**

nEDM2017 Workshop, 19/10/2017, FLAUX Pierrick



### Geometrical modification since Feb. 2017





### **Details on mechanical solutions**

### **Comparative Mechanical Design**

#### 4 Different way to do :

PCB	<b>Plexiglass</b> (Wire on grooves)	PCB + Tube (Tube for straight wire)	Plexiglass + Tube			
Copper thickness 0,075 <0,4mm<br Width max 10mm (limited by screws)	Wire ø1,5mm (1,7mm²)	Wire ø1,5mm on tube ø2,5mm internal (Carbon or Fiber glass) Copper thickness 0,4mm may be possible	Wire ø1,5mm (1,7mm²)			
Big size PCB ⇒No many company / Technic limit ⇒Cost ??	Small grooves to mill (Width 2mm) Each side divided by 6 possible	Small size PCB ⇒Easy to build ⇒Cost	Small size Plexiglass ⇒Easy to build ⇒Cost			
Each side divided by minimum 6 panel + Linking on corner ⇒Many welded connection ( > 1500)	0 Welded connection	Some welded connection	0 Welded connection			
120 Kg PCB (+ 400Kg framework)	<b>450 Kg plexiglass</b> 32 Kg copper (+ 400Kg framework)	50 Kg < 32 Kg copper (+ 400Kg framework)	> 50 Kg (Plexi + tube) 32 Kg copper (+ 400Kg framework)			
Easy to install	Need very long time to install	Need long time to install	Need long time to install			
Sample for magnetic test ??	Easy to check at PTB	Many parts to check at PTB (1200 tubes)	Many parts to check at PTB (1200 tubes)			
Very good position accuracy	Good position accuracy		Less accurate solution			
From Damien Goupillière , 31/05/2017						



Without door and right panel



Plexiglass prototype







#### Symetric way (only 1/8th in the simulation)



#### Harmonic Decomposition

 $\rightarrow$  G_{2.0} increases , up to ~10 pT.cm⁻² for a symetric shield deformation of 3,00 mm







#### « Anti-Symetric » way



#### Harmonic Decomposition

 $\rightarrow$  G₁₀ requirements exceeded with 0,25 mm deformation



### Neutron depolarisation

#### Depolarisation (PRA 49 MC Gregor (1994), Roccia PhD) :



Where L is the chamber height, R, the radius of a cylindrical chamber and D the diffusion coefficient

#### $T_{1,walls} \approx 5000 \text{ s}$ . Depends on the wall surface quality



Cette formule, établie pour des gaz [52] est aussi valable pour un gaz de neutrons ultrafroids sous la condition de définir le coefficient de diffusion par  $D = v_{xy} \frac{\lambda}{3}$  [67] où  $v_{xy}$  est la vitesse moyenne des neutrons dans le plan transverse au champ magnétique et  $\lambda$  est le libre parcours moyen des neutrons. Cette contribution est très faible car elle est supprimée par la valeur du champ principal au carré.

Very weak contribution

#### For the same amplitude of vertical and horizontal gradients :

$$\frac{\Gamma_z}{\Gamma_y} = \frac{4}{35} \cdot \left(\frac{L}{R}\right)^4 = 0.7 \% \text{ with } L = 12 \text{ cm and } R = 23,5 \text{ cm}$$

 $\rightarrow$  Depolarisation mainly due to horizontal gradients of vertical componant B_z

 $\rightarrow$  n2EDM requirements : ( $\partial B_y/\partial x$ ), ( $\partial B_y/\partial y$ ) < 8 pT.cm⁻¹



# RF pulse + Vertical gradient

The two chambers shares the same RF pulse

If there is a vertical gradient,  $\langle B_{top} \rangle \neq \langle B_{bottom} \rangle$ 

 $\rightarrow$  « working points » are different

→decrease of sensitivity

n2EDM requirement :  $\langle \partial Bz / \partial z \rangle < 0.7 \text{ pT.cm}^{-1}$ 



### Systematic effects

#### Uncompensated field drift : Time variation of vertical gradient which can't be corrected

gravitational shift. The false EDM due to a correlated part of the gradient  $\delta G(E)$  reads:

$$\delta d_{n} = \frac{h\gamma_{n}}{4E} (h^{B} - h^{T}) \delta G(E).$$
(17)

The goal for n2EDM is to have this systematic effect under control at the level of  $5 \times 10^{-28} e \cdot \text{cm}$ . Assuming E = 15 kV/cm, and  $h^B - h^T = 0.1 \text{ cm}$ , this corresponds to a control over the correlated part of the gradient at the level of  $G(E) \leq 200 \text{ fT/m}$ .

#### Motional false EDM :

The motion of a particle inside a non-uniform static field also creates a false EDM For large scale B non-uniformities, We have up to cubic terms

$$d_{\rm Hg \to n}^{\rm False} = \frac{\hbar \gamma_{\rm n} \gamma_{\rm Hg}}{32c^2} D^2 \left[ G_{1,0} - G_{3,0} \left( \frac{D^2}{8} - \frac{3H'^2 + H^2}{4} \right) \right].$$

Partially corrected by the crossing point technique

$$d_{\text{Hg} \to n}^{\text{False}} = \frac{h\gamma_{n}\gamma_{\text{Hg}}}{32c^{2}}D^{2} \bigg[ G_{\text{Hg}} + G_{3,0} \bigg( \frac{D^{2}}{16} + \frac{H'^{2}}{2} \bigg) \bigg]. \qquad \text{With the correction} \quad G_{\text{Hg}} = G_{1,0} + \frac{1}{16}G_{3,0} (4H'^{2} + 4H^{2} - 3D^{2}).$$

Leading to n2EDM requirements for  $G_{3,0} < 3.3 \times 10^{-5} \text{ pT.cm}^{-3}$ and  $G_{5,0} < 1.1 \times 10^{-8} \text{ pT.cm}^{-5}$