NEWS-G Light Dark Matter Experiment

Daniel Durnford Supervisor: Prof. Marie-Cécile Piro

> WNPPC 2020 Banff, Alberta, February 14th

Direct detection: searching for elastic scattering of (historically) WIMP dark matter off atomic nuclei

Daniel Durnford

Direct detection of dark matter

No discovery at 'WIMP miracle' mass regime is motivation for low mass WIMPlike DM such as asymmetric DM, mirror DM, and dark sector models [1-4]

[2] R. Essig et al, Dark Sectors and New, Light, Weakly-Coupled Particles (2013).

[3] K. Petraki et al, Int. J. Mod. Phys. A, 28(19), 1330028 (2013).

[4] K.M. Zurek, Phys. Rep., 537(3), 91 (2014).

Daniel Durnford

Direct detection of *light dark matter

Direct detection of *light dark matter

Direct detection of *light dark matter

 10^{4}

 $E_R [eV_{nr}]$

10⁵

10³

10⁻²

WNPPC 2020

10⁻⁵

10¹

10²

 $E_R [eV_{nr}]$

10³

Spherical Proportional Counters (SPCs) to search for low-mass dark matter

Metallic vessel filled with a noble gas mixture, with a single high voltage anode/sensor

> Low-A target atoms increases sensitivity to low-mass WIMPs

> > Low capacitance (~0.4 pF) decreases electronic baseline noise

> > > Townsend avalanche provides large gain

Energy threshold ~ 10 eV !

 $\langle \# PE \rangle = \frac{E}{W(E)}$

(2) Drift of charges

Saturday!)

 $\langle \# PE \rangle = \frac{E}{W(E)}$ $W_{\rm nr} = W_{\gamma}/Q(E) \quad \begin{array}{l} {\rm Neon:} \ {\rm W_{\gamma}} \sim 36 \ {\rm eV/pair} \\ {\rm Q} \sim 0.2 \end{array}$

(1) Primary Ionization

(2) Drift of charges

Radially-dependent diffusion allows for fiducialization (see Yuqi Deng's talk on Saturday!)

(3) Avalanche of secondary e-/ion pairs

Amplification of signal through Townsend avalanche (tunable with V)

(1) Primary Ionization $\langle \# PE \rangle = \frac{E}{W(E)}$ $W_{\rm nr} = W_{\gamma}/Q(E) \quad \begin{array}{l} {\rm Neon:} \ {\rm W}_{\rm Y} \sim 36 \ {\rm eV/pair} \\ {\rm Q} \sim 0.2 \end{array}$

(2) Drift of charges

Radially-dependent diffusion allows for fiducialization (see Yuqi Deng's talk on Saturday!)

(3) Avalanche of secondary e-/ion pairs

Amplification of signal through Townsend avalanche (tunable with V)

(4) Signal formation

Current induced by the secondary ions drifting away from anode

(5) Signal readout

Current integrated and digitized

Daniel Durnford

First results from NEWS-G

Daniel Durnford

WNPPC 2020

Next generation of NEWS-G

A 140cm ø is SPC currently being installed at SNOLAB!

Next generation of NEWS-G

Oxygen and water contamination in the gas can dramatically reduce signal amplification

A getter filter and circulation system will be used to remove these contaminants

This will allow for long-term operation of the detector (> 1 month)

Radon removal and gas composition analysis techniques are also being developed...

> See Patrick O'Brien's talk later today!

charge loss [%]

Commissioning data was taken at the:

A water tank was used instead of the PE shield

First test of sensor deployment system, electronics

Data taken with Neon and pure CH₄

See Jean-Marie Coquillat's talk Saturday

Next generation of NEWS-G

The much larger drift volume allows us to resolve individual electrons in time!

UV Laser events from new 140cm SPC:

³⁷Ar events from 30cm prototype SPC:

Daniel Durnford

Low energy characterization

Because the WIMP recoil spectrum is roughly exponential, most sensitivity low DM masses comes from single quanta (1e⁻) events. Therefore we need to accurately characterize our energy response at this regime.

Daniel Durnford

UV laser setup

Q. Arnaud et al. (NEWS-G Collaboration), Phys. Rev. D 99, 102003 (2019)

Daniel Durnford

WNPPC 2020

13/17

Single electron response characterization

The excellent fit validates the avalanche response model [5]:

$$\mathcal{F}(E') = \mathbb{P}_{\text{Poisson}}\left(0|\mu\right) + \sum_{n=1}^{\infty} \mathbb{P}_{\text{Polya}}^{(n)}\left(E'|\theta\langle G\rangle\right) \times \mathbb{P}_{\text{Poisson}}\left(n|\mu\right)$$

(This is then convolved with a Gaussian to incorporate baseline noise)

Daniel Durnford

³⁷Ar is a gaseous calibration source:

- Two low-energy calibration points
- Allows us to calibrate the detector response to volume events

Daniel Durnford

WNPPC 2020

Daniel Durnford

WNPPC 2020

15/17

In particular, the fit of the L-shell gives empirical support for COM-Poisson

Daniel Durnford

WNPPC 2020

16/17

NEWS-G @ SNOLAB

NEWS-G is expected to be sensitive to WIMP masses ~100 MeV using H-rich gas and an energy threshold < 50 eV_{nr}

Installation is in progress, with first data expected in summer 2020!

SRIM quenching factor, Background: 1.78 dru, ROI: 14 eVee - 1 keVee

Optimum Interval Method

Daniel Durnford

Thank you!

Queen's University Kingston - G Gerbier, G Giroux, P di Stefano, R Martin, S Crawford, M Vidal, G Savvidis, A Brossard, F Vazquez de Sola, K Dering, G Nunzi, J McDonald, M Van Ness, M Chapellier, P Gros, JM Coquillat, JF Caron, L Balogh

- Copper vessel and gas set-up specifications, calibration, project management
- Gas characterization, laser calibration on smaller scale prototypes
- Simulations/Data analysis

IRFU (Institut de Recherches sur les Lois fondamentales de l'Univers)/CEA Saclay - I Giomataris, M Gros, JP Mols

- Sensor/rod (low activity, optimization with 2 electrodes)
- Electronics (low noise preamps, digitization, stream mode)
- DAQ/soft

Aristotle University of Thessaloníki - I Savvidis, A Leisos, S Tzamarias

- Simulations, neutron calibration
- Studies on sensor

LPSC/LSM Laboratoire de Physique Subatomique et Cosmologie, Laboratoire Souterrain de Modane) Grenoble -

- D Santos, M Zampaolo, A DastgheibiFard JF Muraz, O Guillaudin
- Quenching factor measurements at low energy with ion beams
- Low activity archaeological lead
- Coordination for lead/PE shielding and copper sphere

Pacific Northwest National Laboratory - E Hoppe, R Bunker

- Low activity measurements, copper electro-forming
- **RMCC Kingston** D Kelly, E Corcoran, L Kwon ³⁷Ar source production, sample analysis
- **SNOLAB Sudbury** P Gorel, S Langrock Calibration system/slow control

University of Birmingham - K Nikolopoulos, P Knights, I Katsioulas, R Ward

- Simulations, analysis, R&D

University of Alberta - MC Piro, D Durnford, Y Deng, P O'Brien - Gas purification, data analysis

Associated labs: TRIUMF - F Retiere

The NEWS-G Collaboration (November 2019)

Extra Slides

The statistics of primary ionization

Measurements of F in different substances have been made:

 $F \lesssim 0.2$

Fig 3 A typical pulse height spectrum of proportional scintillation produced by X-rays from a 55 Fe source in argon

Medium	F
Si	0.155 ± 0.002 (3 keV e⁻)
	0.134 ± 0.003 (F-Ka)
Ar	0.23 ± 0.05 (⁵⁵ Fe)
	0.20 ± 0.02 (5.3 MeV α)
Ar+0.8% CH4	0.19 (5.68 MeV α)
Xe (gas)	0.170 ± 0.007 (soft x-rays)
Xe (liquid)	0.033 ± 0.045
Ge	0.121 ± 0.001 (Al-Ka)

Daniel Durnford

Theoretical expectations for F

Calculations based on electron scattering cross sections confirm that at high energy F approaches an asymptotic limit

At low energies, F is expected to tend to 1

Figure 4. Three-dimensional plot of the probability $P(T_0, j)$ that exact-*j* ionisations are produced upon the complete slowing down of electrons of initial energy T_0 in He.

Figure 5. Dependence of Fano factor F₂ for electrons completely stopped in methane (+---+), argon⁽¹²⁾(○----○) and a gas mixture of 50% methane and 50% argon (×---×) on the electron energy T compared with experimental results for a gas mixture of 90% argon and 10% methane of Hurst et al⁽¹³⁾ for 2.6 keV and 5.9 keV X rays (□) and of Neumann⁽¹⁴⁾ for 0.26 keV and 2.82 keV electrons (△).

Daniel Durnford

The COM-Poisson distribution

The COnway Maxwell - Poisson (COM-Poisson) distribution:

$$P(x|\lambda,\nu) = \frac{\lambda^{x}}{(x!)^{\nu} Z(\lambda,\nu)}$$
$$Z(\lambda,\nu) = \sum_{j=0}^{\infty} \frac{\lambda^{j}}{(j!)^{\nu}} \quad \lambda \in \{\mathbb{R} > 0\}, \quad \nu \in \{\mathbb{R} \ge 0\}$$

It is defined at every point in µ/F space (including over-dispersion)

Mean and variance given by:

$$\mu(\lambda,\nu) = \sum_{j=0}^{\infty} \frac{j\lambda^j}{\left(j!\right)^{\nu} Z\left(\lambda,\nu\right)} \quad \sigma^2(\lambda,\nu) = \sum_{j=0}^{\infty} \frac{j^2\lambda^j}{\left(j!\right)^{\nu} Z\left(\lambda,\nu\right)} - \mu\left(\lambda,\nu\right)^2$$

Higher moments calculated with:

$$E(X^{n+1}) = \lambda \frac{\partial}{\partial \lambda} E(X^n) + E(X) E(X^n), \text{ for } n \ge 1$$

Daniel Durnford

At high µ/F, there are asymptotic expressions that can be used to solve for the distribution parameters [36]

Accurate to $\leq 0.01\%$ in μ and F

At low μ/F , a 2D optimization algorithm is used to find the correct values of λ and ν

Results are stored in look-up tables for quick interpolation, accurate to $\leq 0.1\%$

Tables and code to use them available at: <u>https://news-g.org/com-</u> <u>poisson-code/</u>

Charge avalanche statistics

Daniel Durnford

SPC detector response model

Daniel Durnford

For NEWS-G at SNOLAB, our energy response (F/ θ) can shift limits on WIMP SI scattering by ~ a factor of 2

The impact is limited because of the broad avalanche response


```
Daniel Durnford
```


Single electron response characterization

The excellent fit validates the avalanche response model [5]:

$$\mathcal{F}(E') = \mathbb{P}_{\text{Poisson}}\left(0|\mu\right) + \sum_{n=1}^{\infty} \mathbb{P}_{\text{Polya}}^{(n)}\left(E'|\theta\langle G\rangle\right) \times \mathbb{P}_{\text{Poisson}}\left(n|\mu\right)$$

(This is then convolved with a Gaussian to incorporate baseline noise)

Daniel Durnford

Detector monitoring

Daniel Durnford

The UV laser can be used to monitor the detector response during physics runs

Long-term fluctuations in gain can be caused by temperature changes, O₂ contamination, sensor damage...

Laser monitoring data could even be used to correct for long-term fluctuations

Q. Arnaud et al. (NEWS-G), Phys. Rev. D 99, 102003 (2019)

The laser can be used to directly measure the efficiency of our triggering algorithm

Method 1:

SPC-triggered spectrum divided by photo-detector triggered spectrum (this does not account for null laser events)

Method 2:

Fit total spectrum (0 PE + > 0 PE events), then fit > 0 PE spectrum multiplied by error function with $\langle G \rangle$, θ , and σ fixed.

Demonstration of ~10 eV energy threshold: 16 eV in this example

Q. Arnaud et al. (NEWS-G), Phys. Rev. D 99, 102003 (2019)

Daniel Durnford

NEWS-G: Pulse treatment

Daniel Durnford

60

50

Gaussian dispersion in arrival time due to diffusion of charges:

$$\sigma(r) = \left(\frac{r}{r_{sphere}}\right)^3 \times 20 \mu s$$

Rise time used for surface event discrimination

Simulated

100

90

80

Q. Arnaud et al. (NEWS-G), Astropart. Phys. 97, 54 (2018).

³⁷Ar: radioactive gas, decays via electron capture

37 day half life, so we need a way to produce samples at regularly - generated in a small fission reactor, then injected into an SPC:

⁴⁰Ca(n,α)³⁷Ar

Decay produces 2.82 keV and 270 eV x-rays, generated uniformly throughout the detector:

Daniel Durnford

Design of new detector

The two hemispheres of SPC formed by "spinning", electronbeam welded together

Steel skin for shield

VA and archaeological lead

Development of multielectrode sensors!

Glove-box to store sensor in radon, O₂ free environment

Daniel Durnford

Background mitigation

²¹⁰Pb is a long-lived radio-impurity found in copper

Most radiation is stopped inside the copper but...

Bremsstrahlung x-rays (~keV) from ²¹⁰Pb and ²¹⁰Bi β⁻ decay in the copper escape, travel through whole volume

Background mitigation

Measurement of Po-210 α 's over time to extract Pb-210 activity

K. Abe et al. Nucl. Instrum. Methods Phys. Res., Sect. A 884, 157 (2018).

Quenching factor measurements

Measurement campaigns at:

Aluminum window calibration

Laser arrival

Stainless steel 15 cm Ø sphere

Gas pipe

Beam from a TANDEM accelerator used to produce neutrons: D(D,n)³He, p(⁷Li,n)⁷Be

