Radon Mitigation for the NEWS-G Dark Matter Detector

Patrick O'Brien

Supervisor: Prof. Marie-Cécile Piro

February 14, 2020

Dark Matter and NEWS-G

The search for dark matter includes the search for WIMPs (Weakly Interacting Massive Particles)

NEWS-G (New Experiment With Spheres -Gas) targets low mass WIMPs

Patrick O'Brien

WNPPC

Detection Methods

NEWS-G is a gas detector that uses a methane - noble gas mixture

WIMPs produce a nuclear recoil, ionizing a gas particle

The ionized electron creates an avalanche

WNPPC

Problems from Radioactivity

A. Brossard	He mixture	Ne mixture		
²¹⁸ Po	2411	612		
²¹⁴ Pb	663	227		
²¹⁴ Bi + ²¹⁴ Po	987	210		
Total	4061	1050		
To obtain 0.05 dru < 1keV	< 12µBq	< 48µBq		

Based on 10^4 radon decays, in DRU/Bq

Radioactivity can saturate the detector

Sourced from both the materials of the detector and the gas in the detector

Methods are used to remove it from the detector walls and the gas

Patrick O'Brien

WNPPC

Radon Removal Systems

Radon is a noble gas and has a half-life of ~3.8 days

Radon traps are commonly used to remove from gases

Low radioactivity activated carbon is typically used

A method for radon removal from fluids is a distillation column

Radon Trap

Activated charcoal traps rely on atomic and molecular size

Radon has a diameter of 300 pm

- \circ He \rightarrow 56 pm
- \circ Ne \rightarrow 116 pm
- \circ Xe \rightarrow 280 pm
- \circ CH₄ \rightarrow 400 pm

WNPPC

Radon Trap - A New Method

	Rn						
metal	${\nu_{\rm b}, \atop imes 10^{12} \ { m s}^{-1}}$	IP eV	$-\Delta H_{ads}$ (ther), kJ/mol	-ΔH _{ads} (kin), kJ/mol	-EB, kJ/mol	-ΔH ^M _{ads} , kJ/mol	$Xe - \Delta H^{M}_{ads}, kJ/mo$
Cu	6.7	7.72	37 ± 2	40 ± 2	37	25 ± 2	21
Ag	4.65	7.57	20 ± 2	23 ± 2	36	26 ± 2	21.5
Au	4.2	9.22	29 ± 2	33 ± 2	41	33 ± 2	27.5
Pd	6.4	8.33	37 ± 2	41 ± 2	38	35 ± 2	29
Ni	8.1	7.63	39 ± 2	43 ± 2	36	37 ± 2	31

Copper has a high affinity for radon adsorption

Adsorption of Radon on Metal Surfaces: A Model Study for Chemical Investigations of Elements 112 and 114 - R. Eichler and M. Schädel - The Journal of Physical Chemistry B 2002 106 (21). 5413-5420

Uses same apparatus as carboxen trap

Patrick O'Brien

WNPPC

Radon Trap - Design

Patrick O'Brien

WNPPC

Radon Trap - A New Design

Electrophoresis method

High voltage wire used to repel created radon ions

lons created from collisions with neon ions, and charge transfer occurs

Radon Trap - A New Design

Electric field simulations done using FEniCS (Finite Element Analysis)

Drift simulations can be done using these simulations

Patrick O'Brien

WNPPC

Gas Measurement

Gas components and concentrations measured using a Residual Gas Analyser

Does not operate at atmospheric pressures, relies on a vacuum system

Patrick O'Brien

WNPPC

Spectroscopy and Concentrations

Spectroscopy is commonly used in atmospheric and condensed matter physics

Can be used for trace gas detection, properties of gases, and gas concentration measurements

Patrick O'Brien

WNPPC

Accurate Gas Concentration

Current apparatus being assembled

Based on absorption of light targeted for methane

Produces absorption spectrum

Methane concentration can be measured with an infrared laser (1654 nm)

Patrick O'Brien

WNPPC

Current and Future Work

Test radon trap with Carboxen, copper, and brass

Construct new high voltage radon separation method

Calibrate and test laser spectroscopy concentration system

Work for accurate detection of other gases e.g. H_2O , water, oxygen

Acknowledgements

Bonus Slides

