Kaon Electromagnetic Form Factor

Presented by VIJAY KUMAR

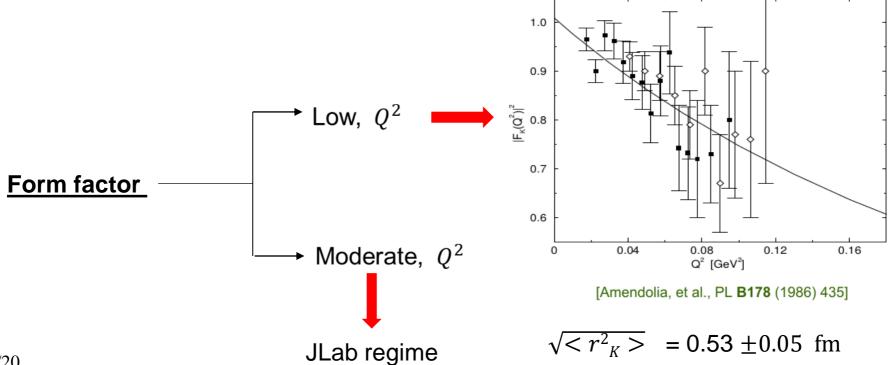
Co- author

G. M. Huber, T. Horn, P. Markowitz, S. J. D. Kay, A. Usman, R. L. Trotta

Scientific Motivation

✤ What are the form factors for strange mesons?

- How to validate different models of meson structure (form factor)?
- Does the pole of kaon meson dominate the longitudinal cross-section?


How do the Longitudinal and Transverse cross-sections depend on the Q² (i.e. Test for QCD factorization)?

Meson Form Factor

Form factor: Elastic electron hadron scattering, $eK \rightarrow e'K'$

 $(p_1 + p_2) FK(Q^2) = \langle K(p_2) | J_{\mu}(0) | K(p_1) \rangle$

Electromagnetic F_K , can be calculated exactly at very large momentum transfer Q^2 , with perturbative QCD

Meson Form Factor

For moderate Q^2 , the form factor remains a theoretical challenge

Clearest case for studying the effect in internal structure of hadron when replacing a lighter quark (d) with heavier one (s)

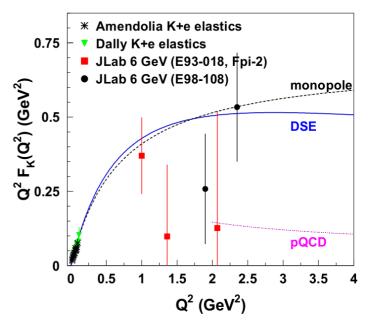
No "free" Kaon target

<u>Kaon cloud</u> of the proton be used in the same way as the pion to extract kaon form factor via p(e, e' K⁺) Λ

The kaon pole is further away from the kinematically allowed region

In the Born term model F_K , appears as

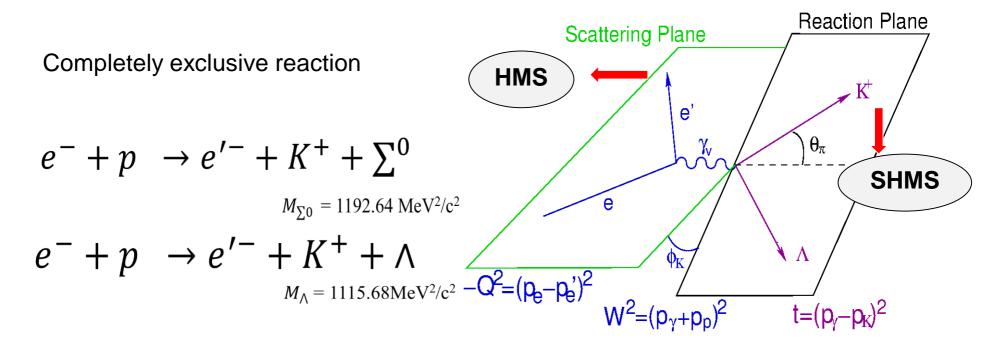
$$\frac{d\sigma_L}{dt} \propto \frac{-tQ^2}{(t-m_K^2)} g_{K\Lambda N}^2(t) F_K^2(Q^2,t)$$


 K^+

Experimental Determination of Form Factor

- Model is required to extract the Form factor from longitudinal crosssection
- * First measurement of F_{κ} well above the resonance region
- Measure form factor to Q²=3 GeV² with good overlap with elastic scattering data.
- Previous JLab studies lead us to expect that we can extract K⁺ form factor from -t<0.8 GeV² σ_L data

VGL Regge model


$$F_K(Q^2) = \frac{1}{1 + \frac{Q^2}{\Lambda_K^2}}$$

For VGL/Regge calculation, assume $\Lambda^2{}_{\rm K}{=}0.67~GeV^{2,}$ and $\Lambda^2{}_{\rm K}{*}{=}1.5~GeV^{2,}$

Reaction and Scattering Planes

E12-09-011, Kaon L-T

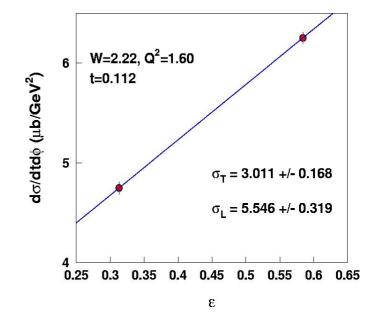
Missing mass equation

$$M_{miss} = [(E_b + m_p - E_{e'} - E_{K^+})^2 - (\overrightarrow{P_e} - \overrightarrow{p_{e'}} - \overrightarrow{p_{K^+}})^2]^{\frac{1}{2}}$$

Rosenbluth Separation Technique

Rosenbluth separation technique is required;

Measurement of cross-section at least two values of ϵ , while fixing the values of W, Q^2 and -t


$$2\pi \frac{d^2 \sigma}{dt d\phi} = \varepsilon \frac{d \sigma_L}{dt} + \frac{d \sigma_T}{dt} + \sqrt{2\varepsilon(\varepsilon + 1)} \frac{d \sigma_{LT}}{dt} \cos \phi + \varepsilon \frac{d \sigma_{TT}}{dt} \cos 2\phi$$

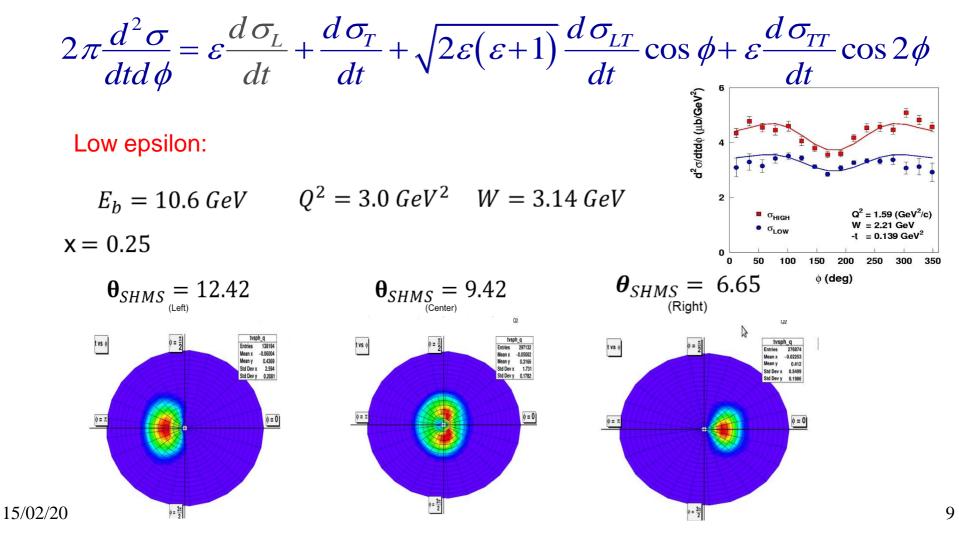
Virtual-photon polarization:

$$\varepsilon = \left(1 + 2\frac{(E_e - E_{e'})^2 + Q^2}{Q^2} \tan^2 \frac{\theta_{e'}}{2}\right)^{-1}$$

- L/T Separation example
- For parallel kinematics

$$2\pi \frac{d\sigma}{dtd\phi} = \varepsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt}$$

Kaon LT Data Collected

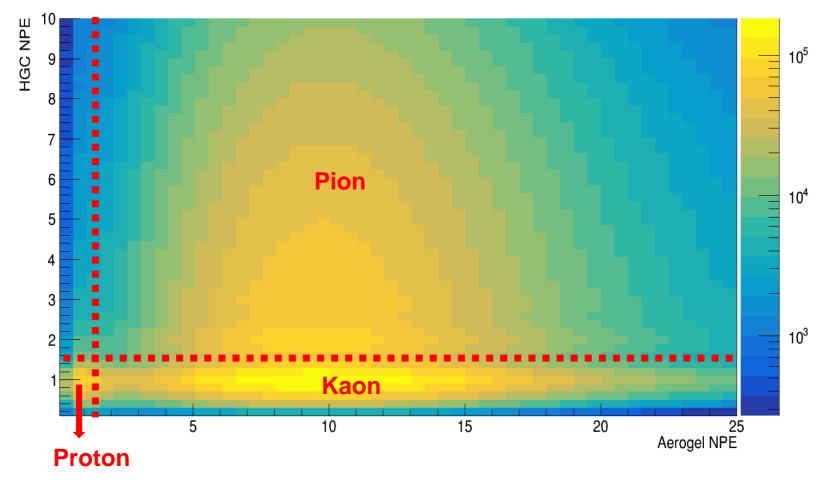

E12-09-011 experiment ran in Hall C at Jefferson Lab over the fall 2018 and spring 2019

E (GeV)	Q² (GeV²)	W (GeV)	x = Q ² /2m _p (E – E')	ε _{High} / ε _{Low}
10.6/8.2	5.5	3.02	0.40	0.53/0.18
10.6/8.2	4.4	2.74	0.40	0.72/0.48
10.6/8.2	3.0	3.14	0.25	0.67/0.39
10.6/6.2	3.0	2.32	0.40	0.88/0.57
10.6/6.2	2.115	2.95	0.21	0.79/0.25
4.9/3.8	0.5	2.40	0.09	0.70/0.45

Rosenbluth Separation Technique

For non parallel kinematics

The interference terms (LT & TT) will be separated out from the non parallel data (i.e. detected K⁺ not parallel to virtual photon momentum)

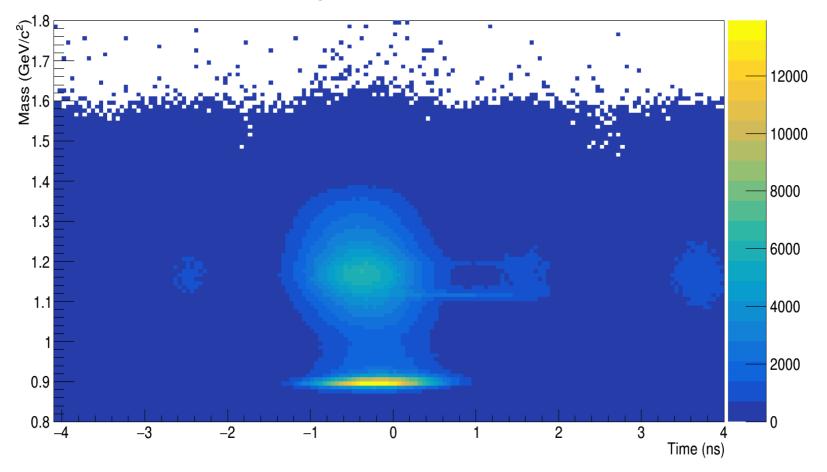

Subtraction of Random Coincidence

 $E_b = 4.9 \ GeV$ $Q^2 = 0.5 \ GeV^2$ $w = 2.40 \; GeV$ x = 0.09 $\boldsymbol{\theta}_{SHMS} = 6.0 \ (right)$ *I* = 16 uA $t_{coin} = t_{HMS} - t_{SHMS}$ Kaon Coincident Time vs β for ROC1 (w/ particle ID) ഫ 2 Real 1.8 10⁴ Random 1.6 1.4 10³ 1.2 1 10² 0.8 0.6 Random Random 10 0.4 0.2 0 -20 -10 0 10 20 30 Time (ns)

Particle Identification (PID)

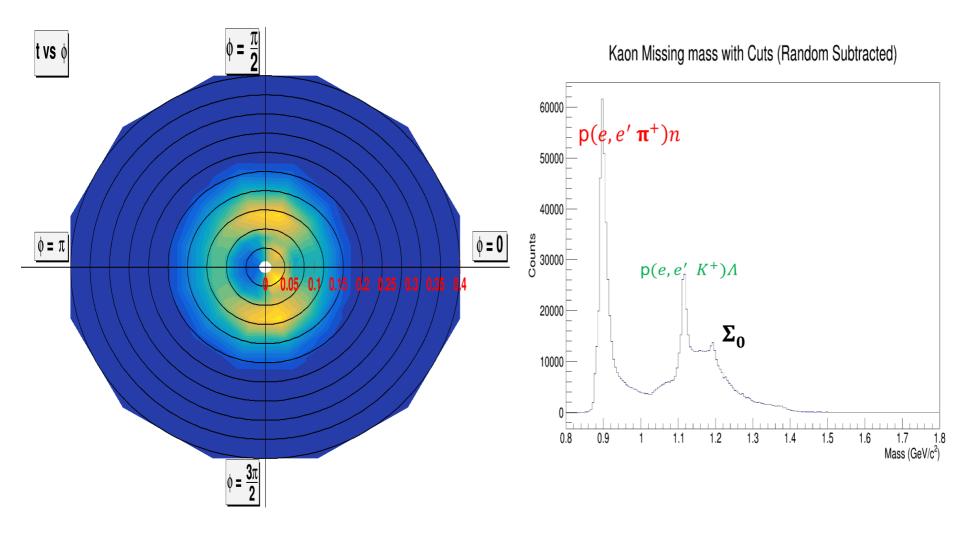
The selection of kaon is done using Heavy-Gas Cerenkov and Aerogel Cerenkov detectors

NPE in SHMS Aerogel and Heavy Gas



Missing Mass Reconstruction

Missing mass


$$M_{miss} = [(E_b + m_p - E_{e'} - E_{K^+})^2 - (\overrightarrow{P_e} - \overrightarrow{p_{e'}} - \overrightarrow{p_{K^+}})^2]^{\frac{1}{2}}$$

Kaon Missing mass vs Coincidence Time

Missing Mass Reconstruction

$$M_{miss} = [(E_b + m_p - E_{e'} - E_{K^+})^2 - (\overrightarrow{P_e} - \overrightarrow{p_{e'}} - \overrightarrow{p_{K^+}})^2]^{\frac{1}{2}}$$

Future Perspective

- We are preparing for comprehensive particle identification (PID) analysis.
- Systematic studies on cryotarget boiling, deadtime, luminosity dependence, e-p elastic scattering to determine the reliability of data.
- Very precise measurement (separation) of the longitudinal crosssection.
- Checking that data will allow for the extraction of form factor of kaon.
- Study for the QCD factorization.

Thank you

Thanks to CINP for travel award