Magnetometry for Gravitational Measurements of Antihydrogen

Nathan Evetts for the ALPHA Collaboration WNPPC, 2020

Outline

• How to measure the gravitational force on an anti-atom

- Systematic characterization
 - Nuclear Magnetic Resonance (NMR) Magnetometry

• Low temperature NMR challenge

Asymmetry in the Universe

Why study antimatter?

Antihydrogen recipe

~10⁴ antiprotons (from Antiproton Decelerator, CERN)
~10⁶ positrons (from beta decay , Na²² source)
Cool to ~20 K
Mix!

Antihydrogen Magnetic Trap

- Vertical Magnetic Trap $E = -\vec{\mu} \cdot \vec{B}$
- Trap depth ~ 0.5 K
- ~1000 anti-atoms trapped per day (ALPHA2 performance)

Octupole coil

Mirror coils

5

Annihilation detection

- y-z cross section Track points Annihilation detected by product tracks rTPC Anti-Hydrogen Annihilation Trap and Cryostat rTPC Magnet
- Single atom resolution
- Vertex resolution ~ 6mm

2.3 2

Ξ

Antihydrogen Gravity Experiment

• Release antiatoms from magnetic trap, infer gravity from annihilation patterns

7

Antihydrogen Gravity Experiment

• "Size" of gravitational signal (magnetic units)

$M\bar{g}\Delta z/\mu = 400\mu T$

Magnetometry with Nuclear Magnetic Resonance (NMR)

• Spin precession induces voltage in a coil

• Precession frequency proportional to magnetic field

Cryogenic NMR probes Mirror coil diagnostic

Difficult environment: Cryogenic, poor physical access, non-uniform field, etc...

Aluminium NMR signal (at T~15K)

Aluminium NMR signal (at T~15K)

Magnetometer Performance Expectations

Magnetometer Performance Expectations

Materials I'd like to characterize

Material	Linewidth
Lead	160 µT
Indium Phosphide	230 µT
Titanium - Phosphide	200 µT
Rubber	2000 µT

... and a dozen others...

NMR samples to Enable 1% gravity sensitivity?

Materials I'd like to characterize

Material	Linewidth
Lead	160 µT
Indium Phosphide	230 µT
Titanium - Phosphide	200 µT
Rubber	2000 µT

Goal:

obtain precision relevant to a gravity experiment

$$M\bar{g}\Delta z/\mu = 400\mu\mathrm{T}$$

... and a dozen others...

Thank you

Building ALPHA-g

Matter - antimatter gravitational interaction

Magnetometry Overview

- 1. Electron cyclotron resonance
 - Pro: Measures field in-situ
 - Con: not fully understood

- 1. Nuclear magnetic resonance (NMR)
 - Rubber samples
 - Pro: Sufficient resolution
 - Con: Best at room temperature
 - Aluminium micro-powder samples
 - Pro: Works at Low temperatures
 - Con: Weaker field resolution

Magnetometry with Plasmas

• Working principle: plasmas heat when irradiated at the cyclotron frequency

1000 Magnetometry with Data by Eric Hunter Bounce frequency -3 MHz 800 Plasmas - 6 MHz - 12 MHz Temperature (K) 600 Plasmas are "hot" when microwave \underline{eB} frequency matches cyclotron frequency ω_{c} 400 Technique to measure plasma temperature: mPhys. Fluids B 4 3432–9 1992 New J. Phys. 16 (2014) 013037. 200 Penning trap 19.56 19.57 19.58 19.59 19.60 19.61 19.62 19.63 electrodes Electron plasma Microwave Frequency (GHz) (~10⁴ particles) Microwave pulse Antihydrogen trap

Magnetometry with Plasmas

- Complicated particle motion creates "side-bands"
 - Must identify "carrier" frequency
 - Preliminary resolution < 1ppm

Problem with Cyclotron Resonance Method

Magnetometry Overview

- 1. Electron cyclotron resonance
 - Pro: Measures field in-situ
 - Con: not fully understood

1. Nuclear magnetic resonance (NMR)

- Rubber samples
 - Pro: Sufficient resolution
 - Con: Best at room temperature
- Aluminium micro-powder samples
 - Pro: Works at Low temperatures
 - Con: Weaker field resolution

Rubber NMR Probe Performance

