

PICO Bubble Chambers:

Past, Present, and Future

Colin Moore Queen's University February 15, 2019

What is **PICO**?

- Dark matter direct detection experiment with bubble chambers
- Combination of two previous collaborations: PICASSO and COUPP
- Bubble chambers provide excellent electron recoil rejection

The Seitz Model

- Seitz "hot spike" model describes nucleation
- Deposited energy must be greater than

$$Q_{Seitz} = 4 \pi r_c^2 (\sigma - T \frac{\partial \sigma}{\partial T}) + \frac{4 \pi}{3} r_c^3 \rho_b (h_b - h_l) - \frac{4 \pi}{3} r_c^3 (P_b - P_l)$$

Energy to form Energy to convert Work to grow

Energy to form bubble surface

Energy to convert liquid to gas

Work to grow Bubble to critical radius

- σ = Surface tension
- T =fluid temperature
- $\rho_{\rm b}$ = bubble density
- $P_{\rm b}$ = pressure in bubble
- P_{i} = pressure in fluid
- h_{b} = specific enthalpy of bubble
- h_{i} = specific enthalpy of fluid
- Additionally, the energy must be deposited in a comparable length scale as the critical radius:

$$r_c = \frac{2\sigma}{P_b - P_l}$$

Bubble Chambers

Bubble Chambers

Bubble Chambers

Seitz and Sounds

Discriminate bubbles caused by alphas from WIMP-like neutrons via "Acoustic Parameter"

$PICO-60 C_{3}F_{8}$

- Bubble chamber filled with 52 kg C_3F_8
- Ran at SNOLAB Nov 2016-Jan 2017
- Achieved background-free 30 live-day run
- Three multi-bubble events during run implied neutrons limited continued exposure

PICO-60 $C_{3}F_{8}$ Run 2

- PICO-60 Run 1: 30 Live Days @ Q_{Seitz} = 3.29 keV
- Run 2 goals: investigate stability at lower thresholds

T (°C)	P (psia)	Q _{Seitz} (keV)	Live Time (days)	Exposure (kg·day)
19.9	25.5	$1.20 \pm 0.1(exp) \pm 0.1(th)$	0.21	8.2
19.9	34.3	$1.58 \pm 0.1(exp) \pm 0.1(th)$	1.29	50.3
15.9	21.7	$1.81 \pm 0.1(exp) \pm 0.1(th)$	7.04	311
15.9	30.5	2.45 ± 0.1(exp) ± 0.2(th)	29.95	1404
13.9	30.2	3.29 ± 0.1(exp) ± 0.2(th)	29.96	1167

Run 1

$PICO-60 C_{3}F_{8} Run 2$

3 Singles, 2 Multiples in 30 live days (within 90% C.L. of predictions)

Run 1: Q _{Seitz} = 3.29 keV								
	Acceptance	Fiducial Mass	Exposure	Number of Events				
Singles	85.1 ± 1.8	45.7 ± 0.5	1167 ± 28	0				
Multiples	99.4 ± 0.1	52.2 ± 0.5	1555 ± 15	3				
Run 2: Q _{Seitz} = 2.45 keV								
	Acceptance	Fiducial Mass	Exposure	Number of Events				
Singles	+1.9 95.9-3.4	48.9 ± 0.8	1404 ⁺⁴⁸ -75	3				
Multiples	$99.9_{-0.1}^{+0.0}$	52.0 ± 0.1	1556 ⁺³	2				

PICO-60 C₃F₈ Events

16

PICO-40L

- New detector design: "Right Side Up"
- Two temperature regions:
 - warm (superheated) upper region
 - cold (liquid) lower region
- Lower backgrounds expected from lack of water buffer and reduced effect of microscopic debris

PICO-40L Status

- Commissioning in progress
- Water tank fill happening soon
- Physics runs will begin shortly after water shield is full

PICO-40L Physics

 Plan to explore parameter space outlined in recent electron recoil nucleation paper, and run at optimal (P, T)

PICO-40L Physics

- Plan to explore parameter space outlined in recent electron recoil nucleation paper, and run at optimal (P, T)
- Expect ~1 order of magnitude improvement over PICO-60 limits

PICO-500

- Tonne-scale bubble chamber with **Right Side Up design**
- Located in Cube Hall in SNOLAB
- Currently in design phase

PICO-60 Efficiency

PICO-40L Physics

 Plan to explore parameter space outlined in recent electron recoil nucleation paper, and run at optimal (P, T)

Nucleation probability: $P = Ae^{-Bf(P,T)}$

Nuclear recoils:
$$f(P,T) = Q_{Seitz} = 4\pi r_c^2 (\sigma - T \frac{\partial \sigma}{\partial T}) + \frac{4\pi}{3} r_c^3 \rho_b (h_b - h_l) - \frac{4\pi}{3} r_c^3 (P_b - P_l)$$

Electron recoils: $f(P,T) = \frac{E_{ion}}{r_l \rho_l}$
 $E_{ion} = 4\pi r_c^2 (\sigma - T \frac{\partial \sigma}{\partial T}) + \frac{4\pi}{3} r_c^3 P_l$
 $r_l = r_c (\frac{\rho_b}{\rho_l})^{\frac{1}{3}}$

Seitz Threshold vs Stopping Power

