Collecting Helium Scintillation Light Investigation of Wavelength Shifting Materials for an Active Helium Target

Michael Perry

MOUNT ALLISON UNIVERSITY Sackville, New Brunswick, Canada

February 15, 2020

A2 Collaboration

- Nuclear Physics collaboration based at Johannes Gutenberg Universität in Mainz, Germany
- Real photon experiments ranging from 40 MeV -1603 MeV
- Compton scattering of photons off protons and neutrons

Quantum Chromodynamics

- Theory governing the strong nuclear force
- Well understood at high energies (Asymptotic Freedom and pQCD)
- Much harder to test at low energies (confinement, non-pQCD)

Figure: π^+ meson https://en.wikipedia.org/wiki/Pion

Scalar Polarizabilities

Composite system

Where Theory and Experiment Meet

- Fundamental structure constants (mass, charge...)
- Response of internal structure to applied EM fields

• Note:
$$\beta = \beta_{para} + \beta_{dia}$$

 Photon acts as applied EM field

Michael Perry (Mt. Allison University)

WNPPC 2020

4 / 30

Current Accepted Values

Nucleon	α (×10 ⁻⁴ fm ³)	$\beta(\times 10^{-4} \text{fm}^3)$
Proton	11.2 ± 0.4	2.5± 0.4
Neutron	11.8 ± 1.1	3.8 ± 1.2

- \blacktriangleright Direct proton measurments \rightarrow Liquid hydrogen
- No free neutron target available ...
- Must resort to alternate target materials

Measuring Neutron Polarizabilities

Until now...

- Low energy neutron scattering \rightarrow **Dependent only on** α
- \blacktriangleright Compton experiments on deuterium \rightarrow Require Theoretical models \rightarrow Larger uncertainty

ChPT for Compton on ${}^{3}\text{He}$

- Shukla, Nogga, and Phillips (2009) present methods using chiral pertubation theory to extract neutron polarizabilities
- Larger sensitivity to α and β , less model dependent
- Larger atom \rightarrow larger Compton cross section

Active Helium Target Theory

- Many background channels: π^0 production, ³He breakup
- Active: $\mathbf{E}_{miss} = \mathbf{E}_{\gamma} \mathbf{E}_{\gamma'} \mathbf{E}_{He'} = \mathbf{0}$
- Require $E_{He'}$ to reduce background

Active Helium Target Prototype

- Tests with ⁴He at 10 bar, ³He = \$\$\$
- Testing with 5 MeV
 ²⁴¹Am α source excite He the same way ³He recoil nuclei would
- SiPMs used to collect scintillation light (200 nm - 900 nm)
- Three active diodes, coincidences

Helium Scintillation

 Helium gas with pressure >1 bar scintillates in VUV (10 nm - 200 nm)

Figure: Helium scintillation spectrum (Jebali 2013)

WNPPC 2020

Original Idea: Helium/Nitrogen Mixture

Add Nitrogen Gas

- 500 ppm
- ► Shifts to ~390 nm
- Worked for close α source
- Not enough for realistic Compton events

Numerous (Unsuccessful) Attempts

- Wavelength shifting fibres
- Light guides
- Tested in vacuum, helium with & without nitrogen

Tetraphenyl Butadiene

TPB

- Scintillating noble gas experiments (NEXT, DEAP, many more!)
- VUV (as low as 45 nm) to 430 nm (SiPM)
- Ideally applied via vacuum evaporation, dissolved
- Scintillation under α excitation (Pollman, Boulay and Kuźniak 2010)
- ► Will scintillation from He be discernible from *α* excitation?

Chemically Coated Slides

In the MTA Chemistry lab

- Followed coating procedure from Ignarra 2014
- Dissolve TPB, Polystyrene in Toluene
- 1:3 ratio of TPB to PS
- ► 1:1 ratio of TPB to PS (layers, END)

Initial Tests

- P. Drexler, MZ Technician, performed tests with various slides
- No coincidences with 1:3 TPB to PS

Coincidences 1:1 TPB to PS

Coincidences indicate TPB is effective

Figure: Blue line indicates coincidences made between SiPM diodes, a signature of how Helium scintillates after a Compton event.

fast01 and fast02

Michael Perry (Mt. Allison University)

WNPPC 2020

Scintillation under α ?

Trial in vacuum: Helium events may be separated from α !

Outlook

TPB

- Tests with other slides
- \blacktriangleright Tests with α source in realistic setting
- Possible coupling to light guides
- Vacuum Evaporation

Timeline

- Wavelength shifting issues fixed this summer
- Implementation, data taking and analysis over the next 4–5 years

Thank You!

Thanks to ...

- NSERC for funding
- Dr. David Hornidge
- Peter, Phil, Lena, and everyone at A2

Silicon Photomultipliers

SiPMs

- Used as scintillation detector
- Functions on p-n junction
- PDE at 420 nm, functional 200 nm -900 nm
- Tests currently only on 3 channels

Geometry of SiPMs

Michael Perry (Mt. Allison University)

WNPPC 2020

The p-n junction

- The p-n junction is how PV cells generate electricity
- n-doped material into contact with the p-doped material
- Depletion region is formed, $E_{gap} = e\phi$
- $E_{gap} = 1.1 \text{ eV}$ in silicon

Figure: A schematic of a p-n junction being struck by a photon (Wikipedia)

Tagging Efficiencies For June 2019

- $\epsilon_{Tagg}(i) = \frac{N_{Tagg}(i)}{N_{e^-}(i)}$, where $N_{e^-}(i)$ is the total number of electrons detected, $N_{Tagg}(i)$ is the number of electrons that produced a photon detected in the Pb glass, i is the tagger channel.
- Funny tail where Yoke detectors begins

Michael Perry (Mt. Allison University)

RTMs

- Electrons accelerated via LINAC
- Enter RTM, bent 180°
- Exit at 855 MeV

- RTMs become impractical
- Harmonic Double Sided Microtron, bends 90°
- Capable of 1.6 GeV

Electrons to Photons

- Photons via Bremsstrahlung
- Produced in cone, collimated out

$$\blacktriangleright \mathsf{E}_{\gamma} = \mathsf{E}_{e^{-}} - \mathsf{E}_{e^{-}}'$$

Figure: The Bremsstrahlung Process, image courtesy of thephysicsbehind.com

Other tests

- Tried a β source
- Fibres once more, other light guides
- Nothing

Measurements

- Coincidences on oscilloscope
- Also readout to computer
- Signal inverted, QDC can interpret

CB-TAPS

Michael Perry (Mt. Allison University)

WNPPC 2020

February 15, 2020 29 / 30

Tagger Hall

Figure: The A2 Tagger Hall

WNPPC 2020