WNPPC 2020 SIMULATING A COMPLEMENTARY DETECTOR FOR DESCANT: TO DETERMINE NEUTRON ENERGIES

HARRIS BIDAMAN UNIVERSITY OF GUELPH

- Studying neutron rich nuclei is the at the forefront of nuclear physics research using radioactive beam experiments
- As the ratio of neutrons (N) to protons (Z) increases, the valence neutrons become less bound

C. Weber et al., Nuclear Physics A 803, 1 (2008)

Image from: http://www.phys.utk.edu/expnuclear/nucastro.html

TRIUMF

Canada's particle accelerator centre

- Strong campaign studying neutron rich nuclei at TRIUMF
 - Via beta decay and beta delayed neutron spectroscopy

TRIUMF

Canada's particle accelerator centre

- Strong campaign studying neutron rich nuclei at TRIUMF
 - Via beta decay and beta delayed neutron spectroscopy

GRIFFIN+DESCANT

Experimental Setup

- GRIFFIN (<u>Gamma-Ray</u> <u>Infrastructure For</u> <u>Fundamental</u> <u>Investigation of Nuclei</u>)
- DESCANT (<u>DE</u>uterated <u>SC</u>intillator <u>Array</u> for <u>Neutron Tagging</u>)
- In addition there are beta particle detectors and available position for other ancillary devices

GRIFFIN+DESCANT

Experimental Setup

- DESCANT has good neutron detection efficiency, but at the expense of precision on the neutron kinetic energy
- Good energy resolution could be obtained through the addition of an <u>array of plastic</u> <u>scintillators</u> potentially placed in front of DESCANT
 - Plastic scintillators are inexpensive neutron detectors

Time-of-flight technique

$$E = \frac{1}{2}mv^2 = \frac{1}{2}m\frac{L^2}{TOF^2}$$

- Get TOF from 2 separate detectors that act as a stopwatch
- Beta and neutron emitted "simultaneously"

 $TOF = t_2 - t_1$

• Distance L can be measured

Non relativistic neutron energy

$$E = \frac{1}{2}mv^2 = \frac{1}{2}m\frac{L^2}{TOF^2} - \text{Distance travelled}$$
Time of Flight

 $\left(\frac{\Delta E}{E}\right)^2 = \left(\frac{2\Delta L}{L}\right)^2 + \left(\frac{2\Delta TOF}{TOF}\right)^2$

- Good TOF energy resolution requires thin detectors
- Good efficiency requires thick detectors
- Detector geometry must be optimized

Detector Geometry

- GEANT4 is a toolkit for simulating particles passing through matter
 - Monte-Carlo technique
 - Ideal for designing and optimizing new detector concepts

Detector Geometry

- Simplified geometry
 - Hollow plastic sphere that fits inside DESCANT - roughly 30% solid angle coverage
 - Useful for extracting basic information like efficiencies and scattering effects
- Look at absolute efficiencies of neutrons scattering in plastics for different detector thicknesses

Based on BC408 plastic scintillators

- Compare 3 configurations
 - Plastic only Corresponds to neutrons scattering with full energy
 - Plastic + DESCANT
 - Plastic + DESCANT + GRIFFIN (Full Setup)
- Look at hit probabilities as we add detectors to the simulation to see background levels

TOF is scatter time taken straight from simulation

1 cm thick detector, coincidence timing uncertainty: Gaussian with of 350 ps FWHM

More realistic geometry

NEXT STEPS

- Implement optical physics
 - Extract time and position of scatter
- Other geometries will continue to be investigated
- External frame required?
- Cost?

THANK YOU

Collaborators University of Guelph Paul Garrett Vinzenz Bildstein Allison Radich

GEANT4 SIMULATIONS Scattering Effects

1cm thick detector, with deposited energy conditions > 30 keV

 Many of the nuclei found in the astrophysical rapid neutron capture process are beta delayed neutron emitters

Start with energy conservation

$$m_{Emitter}c^{2} + E_{Emitter} = m_{Daughter}c^{2} + E_{Daughter} + m_{n}c^{2} + T_{n} + T_{R}$$

Use

$$S_n = m_{Daughter}c^2 + m_nc^2 - m_{Emitter}c^2$$

To get:

$$E_{Emitter} = E_{Daughter} + T_n + T_R + S_n$$

- Beta delayed neutron spectroscopy
 - If the following values are measured precisely, information on excited states can be extracted, which has nuclear structure implications.

$$E_{Emitter} = E_{Daughter} + T_n + T_R + S_n$$

$$\downarrow \qquad \uparrow \qquad \uparrow \qquad \downarrow \qquad Neutron$$
(Excited) (Excited) Kinetic Nucleus Separation
State of State of Energy Recoil Energy
Emitter Daughter Neutron Energy

• Our goal is to measure neutron energy with good resolution!

TRIUMF

$$E = \frac{1}{2}mv^2 = \frac{1}{2}m\frac{L^2}{TOF^2}$$

- DESCANT detectors were never intended to extract neutron energies via Time-of-Flight (TOF) technique
 - Current setup leads to energy resolution ~30% using the TOF technique

L = 50cm $\Delta L \approx 15cm$

Image from: https://www.physics.uoguelph.ca/Nucweb/descant.html

$$E = \frac{1}{2}mv^2 = \frac{1}{2}m\frac{L^2}{TOF^2}$$

- DESCANT detectors can use light unfolding algorithms to determine neutron energies.
 - Not intended to be used for event by event determination of neutron energies

L = 50cm $\Delta L \approx 15cm$

Image from: https://www.physics.uoguelph.ca/Nucweb/descant.html

DEUTERATED SCINTILLATORS

F.D. Becchetti et al. / Nuclear Instruments and Methods in Physics Research A 820 (2016) 112–120 119

DEUTERATED SCINTILLATORS

Ideal for lighter nuclei close to closed shells with low level density

F.D. Becchetti et al. / Nuclear Instruments and Methods in Physics Research A 820 (2016) 112-120 119

NEUTRON DETECTION SCINTILLATORS

- Extracting neutron energies is slightly more complicated than other radiation due to their lack of charge
- Need special detectors

 like scintillators which can convert kinetic
 energy of particles into
 photons for particle
 detection

NEUTRON DETECTION SCINTILLATORS

- It is possible to determine the type of radiation incident on a scintillator
 - This can be based on the timing profile of the scintillation light emission

Knoll, G. Radiation and Detection Measurement.

VANDLE AS INSPIRATION

- VANDLE: Versatile Array for Neutron Detection at Low Energies
 - Currently developing NEXT array which has PSD
- Located at Oak Ridge National Laboratory
- Plastic scintillator bars with PMT's on either end
- Plastic used: Bicron BC408
- Three different scintillator sizes:
 - Small(100): 3x3x60 cm³ low-energy neutrons
 - Medium(45): 3x6x120 cm³ 2-7 MeV neutrons
 - Large(60): 5x5x200 cm³ >20 MeV neutrons
- Plastic bars or covers for each DESCANT detector?

W.A.Peters et al. Nuclear Instruments and Methods in Physics Research A 836 (2016) 122-133

GEANT4 SIMULATIONS OPTICAL PHYSICS

