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• Studying neutron rich 
nuclei is the at the 
forefront of nuclear 
physics research using 
radioactive beam 
experiments 

• As the ratio of 
neutrons (N) to 
protons (Z) increases, 
the valence neutrons 
become less bound

!2
C. Weber et al., Nuclear Physics A 803, 1 (2008)
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Beta Delayed Neutron Emission

Mass energy  
differences between 

reactants and 
products  

B A C K G R O U N D
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Image from: http://www.phys.utk.edu/expnuclear/nucastro.html

Astrophysical Processes 
Many r-process nuclei are beta delayed neutron emitters

B A C K G R O U N D
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Canada’s particle accelerator centre  

T R I U M F

• Strong campaign studying neutron rich nuclei at TRIUMF  

• Via beta decay and beta delayed neutron spectroscopy



• Strong campaign studying neutron rich nuclei at TRIUMF  

• Via beta decay and beta delayed neutron spectroscopy

Canada’s particle accelerator centre  
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GRIFFIN+DESCANT

T R I U M F



• GRIFFIN (Gamma-Ray 
Infrastructure For 
Fundamental 
Investigation of Nuclei)  

• DESCANT (DEuterated 
SCintillator Array for 
Neutron Tagging)  

• In addition there are 
beta particle detectors 
and available position for 
other ancillary devices

!7

Experimental Setup

G R I F F I N + D E S C A N T



• DESCANT has good neutron 
detection efficiency, but at the 
expense of precision on the 
neutron kinetic energy 

• Good energy resolution could 
be obtained through the 
addition of an array of plastic 
scintillators potentially placed 
in front of DESCANT 

• Plastic scintillators are 
inexpensive neutron 
detectors 

• Time-of-flight technique
!8

Experimental Setup

G R I F F I N + D E S C A N T



T I M E  O F  F L I G H T  T E C H N I Q U E

• Get TOF from 2 separate 
detectors that act as a 
stopwatch 

• Beta and neutron emitted 
“simultaneously” 

• Distance L can be measured

Decaying 
Nucleus 

(stationary)  

Detector B

Detector A
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T I M E  O F  F L I G H T  T E C H N I Q U E



• Good TOF energy resolution 
requires thin detectors 

• Good efficiency requires thick 
detectors 

• Detector geometry must be 
optimized

Decaying 
Nucleus 

(stationary)  

Detector B

Detector A
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• GEANT4 is a toolkit for 
simulating particles 
passing through matter 

• Monte-Carlo technique 

• Ideal for designing and 
optimizing new detector 
concepts

!12

Detector Geometry

G E A N T 4  S I M U L AT I O N S
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Based on BC408 plastic scintillators

• Simplified geometry 

• Hollow plastic sphere that fits 
inside DESCANT - roughly 30% 
solid angle coverage 

• Useful for extracting basic 
information like efficiencies and 
scattering effects 

• Look at absolute efficiencies of 
neutrons scattering in plastics for 
different detector thicknesses

G E A N T 4  S I M U L AT I O N S
Detector Geometry
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G E A N T 4  S I M U L AT I O N S
Detector Efficiencies
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Based on BC408 plastic scintillators

• Compare 3 configurations 

• Plastic only - Corresponds 
to neutrons scattering with 
full energy  

• Plastic + DESCANT 

• Plastic + DESCANT + 
GRIFFIN (Full Setup) 

• Look at hit probabilities as we 
add detectors to the 
simulation to see background 
levels

G E A N T 4  S I M U L AT I O N S
Scattering Effects
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G E A N T 4  S I M U L AT I O N S

Plastic + 
DESCANT + 

GRIFFIN

Plastic + 
DESCANT

Scattering Effects 
1cm thick detector, with deposited energy conditions > 30 keV
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G E A N T 4  S I M U L AT I O N S
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Each distinct 
detector has 
its own top 
and bottom 

PMT

Hole for 
beam line

G E A N T 4  S I M U L AT I O N S
More realistic geometry



• Implement optical physics 

• Extract time and position of 
scatter 

• Other geometries will continue 
to be investigated 

• External frame required?  

• Cost?

N E X T  S T E P S

!22



T H A N K  Y O U
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Collaborators  
University of Guelph 
Paul Garrett 
Vinzenz Bildstein  
Allison Radich 
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Scattering Effects
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• Many of the nuclei found in the astrophysical rapid neutron capture process 
are beta delayed neutron emitters

B A C K G R O U N D

N
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β

βn
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EEmitter = EDaughter + Tn + TR + Sn

mEmitterc2 + EEmitter = mDaughterc2 + EDaughter + mnc2 + Tn + TR

To get:

Start with energy conservation

Use

Sn = mDaughterc2 + mnc2 − mEmitterc2

B A C K G R O U N D



• Beta delayed neutron spectroscopy 

• If the following values are measured precisely, information on 
excited states can be extracted, which has nuclear structure 
implications. 

• Our goal is to measure neutron energy with good resolution!

!28

EEmitter = EDaughter + Tn + TR + Sn

(Excited) 
State of  

Daughter

Kinetic 
Energy  
Neutron

Nucleus 
Recoil 
Energy

Neutron 
Separation 

Energy
(Excited) 
State of  
Emitter

B A C K G R O U N D
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T R I U M F



• DESCANT detectors were never 
intended to extract neutron 
energies via Time-of-Flight (TOF) 
technique 

• Current setup leads to energy 
resolution ~30% using the TOF 
technique 

T I M E  O F  F L I G H T  T E C H N I Q U E

!30

E =
1
2

mv2 =
1
2

m
L2

TOF2

L = 50cm
ΔL ≈ 15cm

Image from: https://www.physics.uoguelph.ca/Nucweb/descant.html

https://www.physics.uoguelph.ca/Nucweb/descant.html


• DESCANT detectors can use light 
unfolding algorithms to determine 
neutron energies. 

• Not intended to be used for 
event by event determination of 
neutron energies 

T I M E  O F  F L I G H T  T E C H N I Q U E
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D E U T E R AT E D  S C I N T I L L AT O R S
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F.D. Becchetti et al. / Nuclear Instruments and Methods in Physics Research A 820 (2016) 112–120 119

13CH2 Target



D E U T E R AT E D  S C I N T I L L AT O R S
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Ideal for lighter nuclei close to closed shells with low level density
F.D. Becchetti et al. / Nuclear Instruments and Methods in Physics Research A 820 (2016) 112–120 119
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• Extracting neutron 
energies is slightly more 
complicated than other 
radiation due to their 
lack of charge 

• Need special detectors  
- like scintillators  - which 
can convert kinetic 
energy of particles into 
photons for particle 
detection
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N E U T R O N  D E T E C T I O N  
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N E U T R O N  D E T E C T I O N  
S C I N T I L L AT O R S

Knoll, G. Radiation and Detection Measurement.

• It is possible to 
determine the type of 
radiation incident on a 
scintillator  

• This can be based 
on the timing profile 
of the scintillation 
light emission



VA N D L E  A S  I N S P I R AT I O N

• VANDLE: Versatile Array for Neutron Detection at 
Low Energies 

• Currently developing NEXT array which has PSD 

• Located at Oak Ridge National Laboratory 

• Plastic scintillator bars with PMT’s on either end 

• Plastic used:  Bicron BC408 

• Three different scintillator sizes: 

• Small(100): 3x3x60 cm3 – low-energy neutrons 

• Medium(45): 3x6x120 cm3 – 2-7 MeV neutrons 

• Large(60): 5x5x200 cm3 – >20 MeV neutrons   

• Plastic bars or covers for each DESCANT detector? 

!36

W.A.Peters et al. Nuclear Instruments and Methods in Physics Research A 836 (2016) 122–133 
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G E A N T 4  S I M U L AT I O N S  
O P T I C A L  P H Y S I C S

Taken from Saint-Gobain plastic scintillator data sheet


