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Accelerating expansion of the Universe

Evidence

• Cosmologically distant Type 1a supernovae (SNIa) [1, 2]

• Baryon acoustic oscillations (BAO) [3]

• Cosmic Microwave Background (CMB) data [4]

Explanation

• Lambda-Cold-Dark-Matter model (ΛCDM) [5]

Limitations: Physical origin cold dark matter (CDM) and the
cosmological constant (Λ) [6]

• Alternative explanations? Several!

Braneworld models
Quintessence models
...
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Explaining accelerating expansion of the Universe
Braneworld model of gravity proposed by Dvali, Gabadadze and Porrati (DGP) [7]
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MPA.

Crossover length scale r0

• r < r0: 4D gravity

• r > r0: 5D modified gravity

Brane self-inflationary solution
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Testing modified theories of gravity

Supernova (SN) observations
Most sensitive probe of the late-time expansion history of the universe up
to redshift z ∼ 1
Gravitational Wave (GW) observations

• ”Standard sirens”

• Disadvantage: Redshift needs to be measured independently

• New opportunities to test modified theories of gravity

• Do large-wavelength gravitational waves and short-frequency photons
experience the same number of spacetime dimensions? [8]
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Limits on the number of spacetime dimensions
GW damping in higher dimensional theories: Theory

In General relativity (GR) the strain goes as

hGR ∝
1

dGW
L

(2)

where dGW
L is the luminosity distance of GW source, here also the

”true” EM distance dEM
L .

In higher dimensional-theories with screening scale Rc , GW strain
scales as [9]

hNGR ∝
1

dEM
L

[
1 +

(
dEM
L
Rc

)n/2]2(γ−1)/n
(3)

where γ is related to the number of dimensions D by

γ =
D − 2

2
(4)

and n gives transition steepness.
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Limits on the number of spacetime dimensions
Laser Interferometer Space Antenna (LISA): Redshift distribution of MBHBs [11]

Simulated data points with their
error bars for one random catalogue
in the model “popIII”.

Predicted merger rates per unit
redshift taken from [10].
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Results Bayesian parameter estimation
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Conclusions

• GWs are a powerful probe of the universe

• LISA has the potential to probe the expansion of the universe in the
redshift range 1 ≤ z ≤ 8

• LISA’s ability to place limits on the number of spacetime dimensions
will depend on:

Redshift distribution of MBHBs and the corresponding efficiency of
host galaxy identifications

• Our analysis is a phenomenological one
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