

Ion Transport Simulations for the TITAN Experiment

Abhilash Javaji

Graduate Student at TRIUMF/UBC

Motivation:

- Study fundamental mechanisms of beta decay
- Decay spectroscopy with unobstructed confinement
- Textbook-like conditions of an ion trap
- Track and study the recoil of all emitted decay products

TITAN: TRIUMF's Ion Trap for Atomic and Nuclear Science

- Experiment receives (radioactive) ion beams from ISAC at TRIUMF
- Transport with mostly electrostatics
- TITAN traps ions primarily for mass measurements.
- Multiple traps for preparation and measurement

A new transport path for the new trap

- My goal: Transport beam from preparation trap to new decay spectroscopy trap
 - Simulate beam
 - Assess beam quality at new trap
 - Implement in experiment

Simulations in SIMION

How is beam quality defined?

Beam quality: From source to new trap

Beam spot: From source to new trap

Beam spot: From source to new trap

Trap Aperture

Beam Emittance: From source to new trap

• X Emittance:

• Effective emittance: 0.1mm*mrad \rightarrow 1.87mm*mrad

Beam Emittance: From source to new trap

• Y Emittance:

• Effective emittance: 0.1mm*mrad \rightarrow 3.46mm*mrad

Next step/solution: Add a focusing element

- Acceptance of new trap requires convergent beam
- Divergent beam at match-point needs a focusing element

Conclusion and Outlook:

- Current Status:
 - A simulation tool to transport beam anywhere in TITAN
 - Perfect transmission to the new trap
 - 100% into trap based on beam spot
 - <100% accepted into new trap based on emittance
- Future work:
 - Ensure 100% of beam accepted into new trap
 - Compare simulation to experiment
 - Integrate the new trap (and do amazing science)

Quantifying influence of specific elements

• Einzel lens voltage dependence

Quantifying influence of specific elements

• Einzel lens voltage dependence

Simulation tool and how it was used

- SIMION:
- Creating electrodes:
 - Importing from STL files
 - Coding Geometry files

TITAN:

TRIUMF's Ion Trap for Atomic and Nuclear Science

- Experiment receives (radioactive) ion beams from ISAC at TRIUMF
- TITAN traps ions for high precision mass measurements.
- Measurement precision proportional to q/m
- Multiple traps for preparation and measurement

TITAN:

TRIUMF's Ion Trap for Atomic and Nuclear Science

- Experiment receives (radioactive) ion beams from ISAC at TRIUMF
- TITAN traps ions for high precision mass measurements.
- Measurement precision proportional to q/m
- Multiple traps for different preparation and measurement

