Applied Quantum Annealing for Track Reconstruction in HEP

Parker Reid WNPPC February 2019

SIMON FRASER UNIVERSITY

The Quantum Computing Company[™]

 \mathcal{O}

Motivation:

HL-LHC scheduled to operate by 2027

Bunch crossing factor of 3 greater than Run 3

Motive

Tracking algorithms functioning with high precision and efficiency

- CPU intensive
- Time-saving algorithms valuable
- Tracking D Wave: Quantum Annealing (QA) hardware company based in Burnaby BC
 - Alternative computing paradigm

Goal: Develop further understanding of QA in tracking algorithms in High-Energy Physics (HEP)

Software package:HEPOPR/Qallse Quantum algorithm Lucy Linder 2019

Annealing

Slicing Algorithm

Results

LHC/ High-Luminosity LHC timeline

Parker Reid WNPPC 2020	Tracking: HEP Introduction	Source: ATLAS Experiment© 2014 CERN		
3	Detector: - Cylindrically symmetrical			
Motive	 Composed of layers Particle interactions with layers recorded as "Hind Hits → Multiple hit seeds → Tracks 	s"		
Tracking				
Annealing	Dataset: TrackML challenge (2019)	End-Caps removed		
Algorithm	Event data: - ~11,000 Particles/event - ~110,000 Hits/event	Kaggle TrackML Detector Topology: R-Z plane		
Results	- End-caps removed - No Calorimeter data			

0_3000

-2000

-1000

14 9

2000

3000 z [mm]

1000

0

Outlook

Parker Reid WNPPC 2020	Annealing: Theory		
5	Goal: Find the minimum solution to a complicated function	Quantum Annealing: Adiabatic Evolution	
Motive	Quantum Annealing: High Energy - Hamiltonian represents function - Starts in known ground state - Adiabatically introduce function	sy (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	Higher Irobability Iower state
Tracking	 Hamiltonian remains in ground state Measure state, retrieve solution 	y Q Applied Magnetic field	
Annealing		Olivia Di Matteo Triumf QM lecture series 2019	
Algorithm	 Quadratic Unconstrained Binary Optimization (QUBO) Problems Forms a Hilbert space Function minimum solvable by Binary inputs 	$H_p = -\sum_{i < j} J_{ij} \sigma_i^z \sigma_j^z - \sum_i h_i \sigma_i^z$	
Results	- Generating best coefficients J _{ij} , h _i non-trivial	Quadratic terms:Linear terms:- Coupling values within- Individual nodes withQuantum AnnealerQuantum Annealer	in
Outlook			

Structure Schematic

Parker Reid WNPPC 2020	Algorithm: Summary	-	
7	Frederic Bapst et.al., A Pattern Recognition Algorithm for Quantum Annealers.		
Motive	<u>https://doi.org/10.1007/s41781-019-0032-5</u> . (2019)	Classical Tracking Algorithm	2)
Tracking	 Pair hits → Doublets Doublets → Triplets Triplets → Quadruplets Determines Quality of Triplet 		initial solution
Annealing			Main loop
Algorithm	 4) Triplet/quadruplets -> QUBO 5) Sub-QUBO/Tabu solve - Qubo Size too large 6) Retrieve Triplet solution sets 	Hybrid Classical- Quantum Solver	global (dnautnum)
Results			(classical)
Outlook	 7) **Checked against truth reconstruction Acquire Purity and Recall 	Lucy Linder 2019	final solution

 $b_{ij} = \begin{cases} -S(Ti,Tj), & \text{if } (T_i,T_j) \text{ form a quadruplet}, \\ \zeta & \text{if } (T_i,T_j) \text{ are in conflict}, \\ 0 & \text{otherwise}. \end{cases}$

Lucy Linder

Outlook

9

Tracking

Annealing

Results

Outlook

Results: Parameter Optimization

Motive Scan QUBO parameter space

- Previous parameters arbitrary
- Only affects linear QUBO terms

Simulated QBsolv used

- Similar performance results to Quantum

Event Density: 50% of total event

Algorithm (

Conclusion: Promising region of penalty parameters

Metrics

_

- **Purity** (precision): Found Truth Tracks/Total Tracks
- Recall (efficiency): Real Tracks/Total Truth Tracks
- Both < 1

$$a_i = \alpha (1 - e^{\frac{|d_0|}{\gamma}}) + \beta (1 - e^{\frac{|z_0|}{\lambda}})$$

10

Complications....

Slicing Algorithm: Summary

Parker Reid WNPPC

Outlook

2020

11 1) Pair hits → **Doublets** 2) Doublets → **Triplets Requires same r-z plane slice** Motive Triplets → **Quadruplets** 3) **Determines Quality of Triplet** _ Tracking Triplet/quadruplets -> QUBO 4) Annealing 5) Sub-QUBO/Tabu solve Qubo Size too large _ 6) Retrieve Triplet solution sets Slicing Resolve overlap from sets Algorithm Results **Checked against truth reconstruction 7) Acquire Purity and Recall -

Results: Slicing

Motive

12

- QBsolv memory/ time consumption dominates full density non-sliced events
 - Considerable improvement in sliced algorithm runtime
 - In this run:
 - 4 r-z plane angular slices

Annealing

Tracking

Slicing Algorithm

Results

Outlook

D0 Model: Memory Required vs Event size Density

Results: Slicing

Motive

13

- QBsolv memory/ time consumption dominates full density non-sliced events
 - Considerable improvement in sliced algorithm runtime
 - In this run: 4 r-z plane angular slices

Annealing

Slicing

Algorithm

Tracking

Considerable Recall and Purity Tradeoff

~ 8% Recall loss ~ 15% Purity loss

Results

Outlook

0.5 ⊨ 0.4

0.5

0.6

0.7

0.8

0.9

Event Density

Outlook

Motive

14

Tracking

Annealing

Slicing Algorithm

Results

Dataset generation with ACTS

- **Realistic Data**
- Systematic errors of overlap algorithm

Determine event density limitation

Potential to work with new D Wave 5000 **Qbit Pegasus architecture**

On the cloud sometime in **2020** _

Thank you for your attention!

Outlook

15

Parameter Optimization: Explicit

- Simulated QBsolv _
- Promising region of penalty parameters _

Track Recall as a Function of D0 and Z0 QUBO Parameters

$$a_i = \alpha (1 - e^{\frac{-|d_0|}{\gamma}}) + \beta (1 - e^{\frac{|z_0|}{\lambda}})$$

Z0 Scaling Factor 1.4 0.95 0.9 0.85 0.8 0.8 0.6 0.75 0.4 0.7 0.2 0.65 0 0.6 0.2 0.4 0.6 0.8 1.2 1.4 1

D0 Scaling Factor

0.8

0.6

00

0.2

0.4

0.6

1.4

1.2

D0 Scaling Factor

BONUS

Track Purity as a Function of D0 and Z0 QUBO Parameters

16

BONUS

Slicing Improvements: Explicit

Memory Required (GB)

83 50 30 Sliced QBsolv Memory 20 **Total Memory** * **QBsolv Memory** 8 10 0 0.9 0.8 Event Density D0 Model: Wall Time vs Event size Density 35000 Time (Seconds) 30000 25000 20000 15000 Sliced Total Runtime Sliced QBsolv RunTime 10000 Total Runtime QBsolv RunTime 5000 ot. 0.6 0.7 0.8 0.9 **Event Density**

D0 Model: Memory Required vs Event size Density

17

Slicing Algorithm: Dataset and Detector PUT THIS IN SLIDE WITH TRACKING

2000

1000

3000

z [mm]

TrackML challenge (2019)

Designed to challenge current tracking algorithms

r [mm]

-3000

-2000

-1000

- Similar to ATLAS ITK Detector

Competition complete, excellent toy dataset

- Complete with Benchmarks!

0

18

Annealing: Classical

Classical Annealing:

- Heuristic algorithm
- Probe local function region
- Look for improvements in solutions
- Probability function avoids local minima
- NP-Hard problem class

Classical Annealing: Cooling Down

BONUS