Development of multi-detector systems for gamma-ray coincidence measurements

Melanie Gascoine

Simon Fraser University Department of Chemistry

> WNPPC 2020, Banff, AB February 14 2020

NGAGING THE WORLD

Canadian Institute of Nuclear Physics

Institut canadien de physique nucléaire

Production of radioactive sources via neutron irradiation

- Thermo Fisher Scientific P-385 deuterium-tritium neutron generator
- $\bullet \ ^2H + {}^3H \rightarrow n + {}^4He$
- Emits neutrons of energy 14.1 MeV at 3×10^8 neutrons/second.

< ⊢□

Production of radioactive sources via neutron irradiation

- Induce (n, x) reactions to produce isotopes of interest
- Analyze reaction products using γ -ray spectroscopy

Image: A match a ma

Experimental program

- Isotope production
 - Neutron generator as a source of nuclear reactants
- Neutron activation analysis
 - Elemental analysis
- Nuclear structure studies
 - Characterization of unknown excited states
- Environmental radioactivity monitoring
 - Fukishima Daichii fallout since 2011

 $\gamma\text{-ray}$ spectroscopy is an analytical technique used for all above components of the experimental program.

GEARS

- High Purity Germanium (HPGe) operates at liquid nitrogen temperatures (<100 K)
- Passive shielding in lead box
- Data acquisition includes timing information

Quantifying results - Gamma ray spectroscopy

-

Image: A match a ma

Time resolved spectroscopy

Time resolved spectroscopy

Developing an improved detection system

- Multiple detectors for simultaneous measurements.
- Longer detection time improves counting statistics and accuracy
- Unable to improve detector sensitivity of GEARS
- Source position is restricted within GEARS

Maximum height of source

$^{60}\mathrm{Co}$ in two positions

A (□) ► A (□)

Compton suppressed spectrometer (CSS)

- HPGe detector
- Bismuth Germanium Oxide (BGO) shield optically coupled to 6 photomultipliers
- 2 BGO back catchers
- Allows for active shielding of partial energy deposits
- Reduce background and improves detection sensitivity at low energies

Compton suppressed spectrometer

February 14 2020 11 / 23

Time coincidence method - active shielding

- Partial energy deposits are detected by the HPGe, as well as either shield or back catchers
- Time coincidence occurs when multiple signals are registered at the same time
- Signals in the HPGe that are in time coincidence with signals in either the shield or back catcher are rejected

February 14 2020

12 / 23

$^{60}\mathrm{Co}$ - suppressed vs. unsuppressed spectra

___ ▶

Building up the CSS Cube

- 6 CSS's with source position in the center
- Coverage on 6 sides will improve sensitivity while increasing signal to noise ratio
- Can use time coincidence method for detection as well as active shielding

CUBE

M. Gascoine

æ

Multi detector systems - time coincidence

- Coincidence occurs for gamma rays detected at the same time in separate components of the spectrometer
- Signals in coincidence are accepted, those that are not get rejected

M. Gascoine

Multi detector systems - time coincidence

- Coincidence occurs for gamma rays detected at the same time in separate components of the spectrometer
- Signals in coincidence are accepted, those that are not get rejected

2-D spectroscopy

2-D spectroscopy

- ∢ ≣ →

< 17 ▶

Angular correlation measurements

-2

<ロ> (日) (日) (日) (日) (日)

Angular correlation measurements

• For a newly observed $\gamma\text{-ray}$ cascade

- Examine angular distribution of the number of events vs. θ_{12}
- Compare resulting plot to simulations to determine the multipolarity of γ -rays
- Use conservation of angular momentum to determine spin and parity of unknown excited states

February 14 2020 20 / 23

Rebuilding the 8π at SFU

- 21 HPGe detectors (20-30% efficiency)
- 20 BGO shields
- 21 pairs of BGO back-catchers
- 21 CSS: high resolution low efficiency outer layer
- BGO Ball: high efficiency low resolution inner layer
- 4π coverage from CSS + 4π coverage from BGO ball

Summary

- γ-ray spectroscopy is a necessary analytical tool for nuclear science
- Development of multi-detector systems significantly improves detection capabilities in γ -ray measurements
- This broadens the scope and provides new opportunities for fundamental and applied nuclear science at SFU

(日) (同) (三) (三)

Acknowledgements

Collaborators

- K. Starosta, E.J. Williams, A. Redey, K. Van Wieren, F. Wu, S. Srivastava, M. Martin
- SFU machine shop
- SFU electronics shop

< 口 > < 同 >

Canadian Institute of Nuclear Physics Institut canadien de physique nucléaire