HIGH-PRECISION HALF-LIFE MEASUREMENT OF ¹⁴O

Winter Nuclear & Particle Physics Conference

RIUMF

Department of Physics

Presented by: Shivani Sharma

M.Sc Physics Candidate Supervisor: Dr. Gwen Grinyer **Financial Support:**

Canadian Institute of Nuclear Physics

Institut canadien de physique nucléaire

On behalf of the TRIUMF GPS and GRIFFIN Collaborations

Outline

- Introduction to "Super Allowed Fermi Beta Decay"
- Key quantities to be measured
- *ft* values for Beta Decay
- Experimental facility
- Data analysis and new ¹⁴O half-life measurement
- Comparison to previous results
- Conclusion and future work

Gas filled proportional counter

```
%TRIUMF
```

Beta Decay

- > Two Types: Beta Minus Decay, Beta Plus Decay
- > Beta Plus Decay: Conversion of a proton into neutron

$${}^{A}_{Z}X_{N} \rightarrow {}^{A}_{Z-1}W_{N+1} + e^{+} + v_{e}$$

Beta Minus Decay: Conversion of neutron into proton

$${}^{A}_{Z}X_{N} \rightarrow {}^{A}_{Z+1}Y_{N-1} + e^{-} + \overline{v}_{e}$$

$$\stackrel{\text{Before}}{\underset{\text{Parent}}{\Rightarrow}}$$

$$\stackrel{\text{After}}{\underset{\text{Daughter}}{\Rightarrow}}$$

"Super allowed Fermi Beta Decay"

- > Beta Decay from parent nuclei can populate several daughter states
- Momentum conservation & selection rules

$$\stackrel{\rightarrow}{J}_{P} = \stackrel{\rightarrow}{J}_{D} + \stackrel{\rightarrow}{L} + \stackrel{\rightarrow}{S} \qquad \pi_{P} = \pi_{D}(-1)^{L}$$

- Allowed decays (L=0)
- Forbidden decays (L=1,2,3,...)
- Fermi decays (S=0)
- ➢ Gamow-Teller decays (S=1)
- If decay occurs between "isobaric analogue states" -> Super
 - States with identical wave functions except p is replaced with n (isospin symmetry)

Key quantities to be measured

- Total transition energy Q value
- \succ Half life T_{1/2} of the parent state
- Branching ratio (BR) to the transition of interest

These quantities are combined into the *ft* value of the beta transition

f = statistical rate function , depends on Q value

> t = partial half life , depends on $T_{1/2}$ and BR

ft values for Beta Decay

From Fermi Theory of Beta Decay :

- > M_{fi} is the nuclear matrix element connecting final and initial states
- g is a quantity that defines the strength of the (weak) interaction

ft values for Beta Decay

From Fermi Theory of Beta Decay :

➢ For the special case of (isospin T=1) super-allowed Fermi transitions
 ➢ M_{fi} = √2 (isospin symmetry)
 ➢ g = G_v Vector Coupling constant (CVC hypothesis)

$$ft = \frac{fT_{1/2}}{BR} = \frac{K}{2{G_V}^2} = \text{constant}$$

Graph between *ft* and Z of daughter

Graph between *ft* and Z of daughter

Possible discrepancy in ¹⁴O Half-Life measurements

Goal: To provide the highest - precision half-life measurement for ¹⁴O that can potentially resolve this discrepancy – TRIUMF ISAC

TRIUMF ISAC (Isotope Separator and Accelerator)

9/17

4π Proportional Gas counter and Fast Tape System

Gas filled proportional counter (detects beta particles)

Data Selection

> Removed cycles with very low statistics (cyclotron interruption)

Decay Curve Fitting

- > Data were fit to the exponential decay curve
- Slope on log scale will give the value of decay constant (half life)

Deduced Half life of Selected Cycles

> Total of 183 cycles (statistical precision ± 6 ms or $\pm 0.008\%$)

Leading Channel Removal Plots

- In order to search for rate dependent effects, leading channels are removed
- Refit to determine the half life as a function of rate

Tests For Possible Systematic Uncertainties

Uncertainty Budget and Final Result

Parameters	Uncertainty (ms)
Half Life (statistical)	6.0
Voltage setting	6.0
Dead time uncertainty	1.0
Contaminant (Na)	0.8
Contaminant (Al)	0.5
Total (quadrature sum)	8.6

Final Result: $T_{1/2}$ (¹⁴O) = 70631 ± 9 ms

Comparison to previous measurements

• Half life of all the previous 10 measurements along with the present work

Conclusion

> Most precise ¹⁴O half life ever measured !!

Final Result: $T_{1/2}$ (¹⁴O) = 70631 ± 9 ms

- Current measurement more precise than previous world average (±0.013%)
- ➢ Future Work→ Measuring half life with GRIFFIN (gamma decay)
 - GRIFFIN described in next talk from Andrew MacLean

Canadian Institute of Nuclear Physics

Institut canadien de physique nucléaire

- G.F.Grinyer¹, G.C.Ball², J.R.Leslie³, C.E.Svensson⁴, F.A.Ali⁴, C.Andreoiu⁵, N.Bernier², S.S.Bhattacharjee², V.Bildstein⁴, M.Bowry², C.Burbadge⁴, R.Caballero-Folch², R.Coleman⁴, A. Diaz Varela⁴, M.R.Dunlop⁴, R.Dunlop⁴, A.B.Garnsworthy², G.M.Huber¹, B.Jigmeddorj⁴, K.Kapoor¹, A.T.Laffoley⁴, K.G.Leach⁶, J.Long⁷, A.D.MacLean⁴, C.Natzke⁶, B.Olaizola², A.J.Radich⁴, N.Saei¹, J.Smallcombe², A.Talebitaher¹, K.Whitmore⁵ and T.Zidar⁴
- ¹Department of Physics, University of Regina, Regina, Saskatchewan
- ² TRIUMF, Vancouver, British Columbia
- ³Department of Physics, Queen's University, Kingston, Ontario
- ⁴Department of Physics, University of Guelph, Guelph, Ontario
- ⁵Department of Chemistry, Simon Fraser University, Burnaby, British Columbia
- ⁶ Colorado School of Mines, Golden, Colorado, United States
- ⁷ University of Notre Dame, South Bend, Indiana, United States

