Sumanta Pal, 15 Feb. 2020, University of Alberta (on behalf of the DEAP collaboration)

NATIONAL GEOGRAPHIC

WNPPC 2020, Banff, 15 Feb 2020

Brief description of the DEAP-3600 detector

- Single phase liquid argon detector with ~3.3 tonne (3279 kg) target in sealed ultraclean Acrylic Vessel (AV) (Diameter: 170 cm).
- Vessel is "resurfaced" in-situ to remove deposited Rn daughters after construction.
- In-situ vacuum evaporated TPB wavelength shifter (128 nm → 420 nm) [JINST 12 P04017 (2017)].
- Bonded 50 cm long light guides + polyethylene shielding against neutrons.
- 255 Hamamatsu R5912 HQE PMTs 8-inch (32% QE, 75% coverage).
- PE detected(light yield): (6.1 ± 0.4) PE/keV_{ee}.
- Position resolution: 30 45 mm.

Detector construction pictures at different stages

WNPPC 2020, Banff, 15 Feb 2020

BERTA

Detector construction pictures at different stages

- The detector is contained in a Stainless Steel (SS) sphere.
- This SS sphere is submerged into a 7.8 m high and 7.8 m diameter wide water tank to suppress neutron and gamma backgrounds from the cavern.

Pulse shape discrimination (PSD) in DEAP-3600

WNPPC 2020, Banff, 15 Feb 2020

Pulse shape discrimination (PSD) in DEAP-3600

- EM/NR discrimination power: $4.1^{+2.1}_{-1.0} \times 10^{-9}$ for 90% NR acceptance in the 15.6 32.9 keV_{ee} range (the WIMP ROI).
- Average leakage probability in the WIMP ROI at 50% NR acceptance is 3.5x10⁻¹¹.

ROI data after all event selection criteria (231 live days)

- But this required several background rejection cuts, that decreased our acceptance.
- All events near the ROI are consistent with background expectation.
- Observed 'unexpected background events' at higher PE. Work is in progress to understand this background.

Dark Matter search results and sensitivity projections (758 tonne-day exposure taken over a period of 231 live days)

DEAP-3600 latest published limit: $3.9 \times 10^{-45} \text{ cm}^2$ at 100 GeV/c² (90% CL) 758 tonne-day (3 tonne x 231 live days) exposure.

Design sensitivity at this WIMP mass is $1.6 \times 10^{-46} \text{ cm}^2$ with a 3 tonnes-year (3 tonne x 1 yr) exposure.

Electromagnetic backgrounds & ⁴²K activity

• Electromagnetic Backgrounds and Potassium-42 Activity in the DEAP-3600 Dark Matter Detector was published last year. [<u>PRD 100 072009 (2019</u>], <u>arXiv:1905.05811</u>]

The energy spectrum of the ER data (shaded grey) with the fit result. Green, yellow, and red belts denote 1, 2, and 3 sigma, confidence respectively.

Modelling LAr pulse shape

- A detailed analysis of liquid argon pulse shape in DEAP-3600 has been performed [arXiv: 2001.09855 (submitted to European Physics Journal C)].
- Understanding the pulse shape so well is important as we use this knowledge to remove afterpulsing, which can weaken the PSD.
- The model considers
 - LAr scintillation physics (include so-called intermediate component)
 - Time response of the TPB wavelength shifter
 - PMT response
 - The model is fit to pulse-shapes of 160
 µs length and describes the observed pulse shape to better than 11% across this time range.

Ongoing activities

- Current published WIMP-search sensitivity from cut-and-count analysis. Expected to increase sensitivity using multivariate analysis.
- Detector reconfiguration work is ongoing; it will be done this year.
- Run the detector in full design sensitivity in 2021-2022.
- Search for admixture of background events and to identify the feature of them that can be used to find and cut them (different models are getting explored).
- Simulation work is also in progress to understand Cherenkov related backgrounds in the detector and to identify them in data.

Backup

A zoomed view of the neck of the DEAP detector

- The neck region has a turbulent mixture of gaseous and liquid argon.
- A 50 micron LAr film was assumed on the flowguides to simulate scintillation light of alphas coming from ²¹⁰Po on neck flowguides.
- Simulating a variation on this model, like a mist (LAr bubbles entrained in argon gas vapour), to understand an observed excess events at high PE.

